Pei Yu, Pantea Pooladvand, Mark M. Tanaka, Lindi M. Wahl
{"title":"宿主范围扩大导致灭绝","authors":"Pei Yu, Pantea Pooladvand, Mark M. Tanaka, Lindi M. Wahl","doi":"10.1137/23m1605582","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1677-1703, June 2024. <br/> Abstract.Nearly all emerging diseases in humans are a result of host-range expansion, in which a pathogen of one species evolves the ability to infect a new host species. To present a rigorous analysis of pathogen host-range expansion, we derive a Lotka–Volterra dynamical system with two competing host species and a single parasite species; the parasite infects only one of the host species. We provide a stability and bifurcation analysis of this model. We then ask what happens if the parasite evolves the ability to infect the alternate host, extending the model to include a parasite population with an expanded host range. We derive explicit global stability and bifurcation conditions for this four-dimensional model in terms of the system parameters. We demonstrate that only four outcomes may occur following the range expansion of a parasite or pathogen, and provide both local and global asymptotic stability conditions for these outcomes. While three of these outcomes were expected, the fourth is counterintuitive, predicting that host-range expansion can drive the original host species to extinction. For example, a native species could be driven to extinction by a longstanding native parasite if that parasite acquires the ability to infect a cultivated species. We briefly discuss the phenomena driving this unexpected prediction and its implications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extinctions Caused by Host-Range Expansion\",\"authors\":\"Pei Yu, Pantea Pooladvand, Mark M. Tanaka, Lindi M. Wahl\",\"doi\":\"10.1137/23m1605582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1677-1703, June 2024. <br/> Abstract.Nearly all emerging diseases in humans are a result of host-range expansion, in which a pathogen of one species evolves the ability to infect a new host species. To present a rigorous analysis of pathogen host-range expansion, we derive a Lotka–Volterra dynamical system with two competing host species and a single parasite species; the parasite infects only one of the host species. We provide a stability and bifurcation analysis of this model. We then ask what happens if the parasite evolves the ability to infect the alternate host, extending the model to include a parasite population with an expanded host range. We derive explicit global stability and bifurcation conditions for this four-dimensional model in terms of the system parameters. We demonstrate that only four outcomes may occur following the range expansion of a parasite or pathogen, and provide both local and global asymptotic stability conditions for these outcomes. While three of these outcomes were expected, the fourth is counterintuitive, predicting that host-range expansion can drive the original host species to extinction. For example, a native species could be driven to extinction by a longstanding native parasite if that parasite acquires the ability to infect a cultivated species. We briefly discuss the phenomena driving this unexpected prediction and its implications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1605582\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1605582","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 2, Page 1677-1703, June 2024. Abstract.Nearly all emerging diseases in humans are a result of host-range expansion, in which a pathogen of one species evolves the ability to infect a new host species. To present a rigorous analysis of pathogen host-range expansion, we derive a Lotka–Volterra dynamical system with two competing host species and a single parasite species; the parasite infects only one of the host species. We provide a stability and bifurcation analysis of this model. We then ask what happens if the parasite evolves the ability to infect the alternate host, extending the model to include a parasite population with an expanded host range. We derive explicit global stability and bifurcation conditions for this four-dimensional model in terms of the system parameters. We demonstrate that only four outcomes may occur following the range expansion of a parasite or pathogen, and provide both local and global asymptotic stability conditions for these outcomes. While three of these outcomes were expected, the fourth is counterintuitive, predicting that host-range expansion can drive the original host species to extinction. For example, a native species could be driven to extinction by a longstanding native parasite if that parasite acquires the ability to infect a cultivated species. We briefly discuss the phenomena driving this unexpected prediction and its implications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.