{"title":"加权冒顶的高等代数","authors":"Hadrian Heine","doi":"arxiv-2406.08925","DOIUrl":null,"url":null,"abstract":"We develop a theory of weighted colimits in the framework of weakly\nbi-enriched $\\infty$-categories, an extension of Lurie's notion of enriched\n$\\infty$-categories. We prove an existence result for weighted colimits, study\nweighted colimits of diagrams of enriched functors, express weighted colimits\nvia enriched coends, characterize the enriched $\\infty$-category of enriched\npresheaves as the free cocompletion under weighted colimits and develop a\ntheory of universally adjoining weighted colimits to an enriched\n$\\infty$-category. We use the latter technique to construct for every\npresentably $\\mathbb{E}_{k+1}$-monoidal $\\infty$-category $\\mathcal{V}$ for $1\n\\leq k \\leq \\infty$ and class $\\mathcal{H}$ of $\\mathcal{V}$-weights, with\nrespect to which weighted colimits are defined, a presentably\n$\\mathbb{E}_k$-monoidal structure on the $\\infty$-category of\n$\\mathcal{V}$-enriched $\\infty$-categories that admit $\\mathcal{H}$-weighted\ncolimits. Varying $\\mathcal{H}$ this $\\mathbb{E}_k$-monoidal structure\ninterpolates between the tensor product for $\\mathcal{V}$-enriched\n$\\infty$-categories and the relative tensor product for $\\infty$-categories\npresentably left tensored over $\\mathcal{V}$. As an application we prove that\nforming $\\mathcal{V}$-enriched presheaves is $\\mathbb{E}_k$-monoidal, construct\na $\\mathcal{V}$-enriched version of Day-convolution and give a new construction\nof the tensor product for $\\infty$-categories presentably left tensored over\n$\\mathcal{V}$ as a $\\mathcal{V}$-enriched localization of Day-convolution. As\nfurther applications we construct a tensor product for Cauchy-complete\n$\\mathcal{V}$-enriched $\\infty$-categories, a tensor product for\n$(\\infty,2)$-categories with (op)lax colimits and a tensor product for stable\n$(\\infty,n)$-categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The higher algebra of weighted colimits\",\"authors\":\"Hadrian Heine\",\"doi\":\"arxiv-2406.08925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a theory of weighted colimits in the framework of weakly\\nbi-enriched $\\\\infty$-categories, an extension of Lurie's notion of enriched\\n$\\\\infty$-categories. We prove an existence result for weighted colimits, study\\nweighted colimits of diagrams of enriched functors, express weighted colimits\\nvia enriched coends, characterize the enriched $\\\\infty$-category of enriched\\npresheaves as the free cocompletion under weighted colimits and develop a\\ntheory of universally adjoining weighted colimits to an enriched\\n$\\\\infty$-category. We use the latter technique to construct for every\\npresentably $\\\\mathbb{E}_{k+1}$-monoidal $\\\\infty$-category $\\\\mathcal{V}$ for $1\\n\\\\leq k \\\\leq \\\\infty$ and class $\\\\mathcal{H}$ of $\\\\mathcal{V}$-weights, with\\nrespect to which weighted colimits are defined, a presentably\\n$\\\\mathbb{E}_k$-monoidal structure on the $\\\\infty$-category of\\n$\\\\mathcal{V}$-enriched $\\\\infty$-categories that admit $\\\\mathcal{H}$-weighted\\ncolimits. Varying $\\\\mathcal{H}$ this $\\\\mathbb{E}_k$-monoidal structure\\ninterpolates between the tensor product for $\\\\mathcal{V}$-enriched\\n$\\\\infty$-categories and the relative tensor product for $\\\\infty$-categories\\npresentably left tensored over $\\\\mathcal{V}$. As an application we prove that\\nforming $\\\\mathcal{V}$-enriched presheaves is $\\\\mathbb{E}_k$-monoidal, construct\\na $\\\\mathcal{V}$-enriched version of Day-convolution and give a new construction\\nof the tensor product for $\\\\infty$-categories presentably left tensored over\\n$\\\\mathcal{V}$ as a $\\\\mathcal{V}$-enriched localization of Day-convolution. As\\nfurther applications we construct a tensor product for Cauchy-complete\\n$\\\\mathcal{V}$-enriched $\\\\infty$-categories, a tensor product for\\n$(\\\\infty,2)$-categories with (op)lax colimits and a tensor product for stable\\n$(\\\\infty,n)$-categories.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们在弱偏富集$\infty$类的框架内发展了加权冒点理论,这是对卢里的富集$\infty$类概念的扩展。我们证明了加权余弦的存在性结果,研究了富集函子图的加权余弦,通过富集余弦表达了加权余弦,描述了富集预波的富集$\infty$-类作为加权余弦下的自由共包的特征,并发展了普遍邻接富集$\infty$-类的加权余弦的理论。我们使用后一种技术来为1\leq k \leq\infty$和$mathcal{V}$-weights的类$\mathcal{H}$构建每个现存的$\mathbb{E}_{k+1}$-单元$infty$-类$\mathcal{V}$、相对于定义了加权 colimits 的 $\mathcal{V}$ 类,在允许 $\mathcal{H}$ 加权 colimits 的 $\infty$ 类上有一个现成的 $\mathbb{E}_k$ 单元结构。随着$\mathcal{H}$的变化,这个$\mathbb{E}_k$单元结构会在为\mathcal{V}$富集的$\infty$范畴的张量积与为\infty$范畴在$\mathcal{V}$上呈现出的左张量的相对张量积之间进行调节。作为一个应用,我们证明了形成$\mathcal{V}$-enriched presheaves是$\mathbb{E}_k$-monoidal的,构造了一个$\mathcal{V}$-enriched版本的Day-convolution,并给出了一个新的构造,即作为一个$\mathcal{V}$-enriched localization of Day-convolution的$\infty$-categories presentably left tensored over$\mathcal{V}$ 的张量积。作为进一步的应用,我们为Cauchy-complete$\mathcal{V}$-enriched $\infty$-categories构造了一个张量积,为具有(op)lax colimits的$(\infty,2)$-categories构造了一个张量积,为稳定的$(\infty,n)$-categories构造了一个张量积。
We develop a theory of weighted colimits in the framework of weakly
bi-enriched $\infty$-categories, an extension of Lurie's notion of enriched
$\infty$-categories. We prove an existence result for weighted colimits, study
weighted colimits of diagrams of enriched functors, express weighted colimits
via enriched coends, characterize the enriched $\infty$-category of enriched
presheaves as the free cocompletion under weighted colimits and develop a
theory of universally adjoining weighted colimits to an enriched
$\infty$-category. We use the latter technique to construct for every
presentably $\mathbb{E}_{k+1}$-monoidal $\infty$-category $\mathcal{V}$ for $1
\leq k \leq \infty$ and class $\mathcal{H}$ of $\mathcal{V}$-weights, with
respect to which weighted colimits are defined, a presentably
$\mathbb{E}_k$-monoidal structure on the $\infty$-category of
$\mathcal{V}$-enriched $\infty$-categories that admit $\mathcal{H}$-weighted
colimits. Varying $\mathcal{H}$ this $\mathbb{E}_k$-monoidal structure
interpolates between the tensor product for $\mathcal{V}$-enriched
$\infty$-categories and the relative tensor product for $\infty$-categories
presentably left tensored over $\mathcal{V}$. As an application we prove that
forming $\mathcal{V}$-enriched presheaves is $\mathbb{E}_k$-monoidal, construct
a $\mathcal{V}$-enriched version of Day-convolution and give a new construction
of the tensor product for $\infty$-categories presentably left tensored over
$\mathcal{V}$ as a $\mathcal{V}$-enriched localization of Day-convolution. As
further applications we construct a tensor product for Cauchy-complete
$\mathcal{V}$-enriched $\infty$-categories, a tensor product for
$(\infty,2)$-categories with (op)lax colimits and a tensor product for stable
$(\infty,n)$-categories.