{"title":"从分类角度看右序群","authors":"Maria Manuel Clementino, Andrea Montoli","doi":"arxiv-2406.10071","DOIUrl":null,"url":null,"abstract":"We study the categorical properties of right-preordered groups, giving an\nexplicit description of limits and colimits in this category, and studying some\nexactness properties. We show that, from an algebraic point of view, the\ncategory of right-preordered groups shares several properties with the one of\nmonoids. Moreover, we describe split extensions of right-preordered groups,\nshowing in particular that semidirect products of ordered groups have always a\nnatural right-preorder.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Right-preordered groups from a categorical perspective\",\"authors\":\"Maria Manuel Clementino, Andrea Montoli\",\"doi\":\"arxiv-2406.10071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the categorical properties of right-preordered groups, giving an\\nexplicit description of limits and colimits in this category, and studying some\\nexactness properties. We show that, from an algebraic point of view, the\\ncategory of right-preordered groups shares several properties with the one of\\nmonoids. Moreover, we describe split extensions of right-preordered groups,\\nshowing in particular that semidirect products of ordered groups have always a\\nnatural right-preorder.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Right-preordered groups from a categorical perspective
We study the categorical properties of right-preordered groups, giving an
explicit description of limits and colimits in this category, and studying some
exactness properties. We show that, from an algebraic point of view, the
category of right-preordered groups shares several properties with the one of
monoids. Moreover, we describe split extensions of right-preordered groups,
showing in particular that semidirect products of ordered groups have always a
natural right-preorder.