从分类角度看右序群

Maria Manuel Clementino, Andrea Montoli
{"title":"从分类角度看右序群","authors":"Maria Manuel Clementino, Andrea Montoli","doi":"arxiv-2406.10071","DOIUrl":null,"url":null,"abstract":"We study the categorical properties of right-preordered groups, giving an\nexplicit description of limits and colimits in this category, and studying some\nexactness properties. We show that, from an algebraic point of view, the\ncategory of right-preordered groups shares several properties with the one of\nmonoids. Moreover, we describe split extensions of right-preordered groups,\nshowing in particular that semidirect products of ordered groups have always a\nnatural right-preorder.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Right-preordered groups from a categorical perspective\",\"authors\":\"Maria Manuel Clementino, Andrea Montoli\",\"doi\":\"arxiv-2406.10071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the categorical properties of right-preordered groups, giving an\\nexplicit description of limits and colimits in this category, and studying some\\nexactness properties. We show that, from an algebraic point of view, the\\ncategory of right-preordered groups shares several properties with the one of\\nmonoids. Moreover, we describe split extensions of right-preordered groups,\\nshowing in particular that semidirect products of ordered groups have always a\\nnatural right-preorder.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.10071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了右预序群的分类性质,给出了这一范畴中极限和列限的明确描述,并研究了一些精确性性质。我们证明,从代数的角度看,右预序群范畴与单子范畴有几个共同的性质。此外,我们还描述了右预序群的分裂扩展,特别表明有序群的半直接积总是具有自然的右预序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Right-preordered groups from a categorical perspective
We study the categorical properties of right-preordered groups, giving an explicit description of limits and colimits in this category, and studying some exactness properties. We show that, from an algebraic point of view, the category of right-preordered groups shares several properties with the one of monoids. Moreover, we describe split extensions of right-preordered groups, showing in particular that semidirect products of ordered groups have always a natural right-preorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信