非相加派生函数

Maxime Culot, Fara Renaud, Tim Van der Linden
{"title":"非相加派生函数","authors":"Maxime Culot, Fara Renaud, Tim Van der Linden","doi":"arxiv-2406.13398","DOIUrl":null,"url":null,"abstract":"Let $F\\colon \\mathcal{C} \\to \\mathcal{E}$ be a functor from a category\n$\\mathcal{C}$ to a homological (Borceux-Bourn) or semi-abelian\n(Janelidze-M\\'arki-Tholen) category $\\mathcal{E}$. We investigate conditions\nunder which the homology of an object $X$ in $\\mathcal{C}$ with coefficients in\nthe functor $F$, defined via projective resolutions in $\\mathcal{C}$, remains\nindependent of the chosen resolution. Consequently, the left derived functors\nof $F$ can be constructed analogously to the classical abelian case. Our approach extends the concept of chain homotopy to a non-additive setting\nusing the technique of imaginary morphisms. Specifically, we utilize the\napproximate subtractions of Bourn-Janelidze, originally introduced in the\ncontext of subtractive categories. This method is applicable when $\\mathcal{C}$\nis a pointed regular category with finite coproducts and enough projectives,\nprovided these projectives are closed under protosplit subobjects, a new\ncondition introduced in this article and naturally satisfied in the abelian\ncontext. We further assume that the functor $F$ meets certain exactness\nconditions: for instance, it may be protoadditive and preserve proper morphisms\nand binary coproducts - conditions that amount to additivity when $\\mathcal{C}$\nand $\\mathcal{E}$ are abelian categories. Within this framework, we develop a basic theory of derived functors, compare\nit with the simplicial approach, and provide several examples.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-additive derived functors\",\"authors\":\"Maxime Culot, Fara Renaud, Tim Van der Linden\",\"doi\":\"arxiv-2406.13398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F\\\\colon \\\\mathcal{C} \\\\to \\\\mathcal{E}$ be a functor from a category\\n$\\\\mathcal{C}$ to a homological (Borceux-Bourn) or semi-abelian\\n(Janelidze-M\\\\'arki-Tholen) category $\\\\mathcal{E}$. We investigate conditions\\nunder which the homology of an object $X$ in $\\\\mathcal{C}$ with coefficients in\\nthe functor $F$, defined via projective resolutions in $\\\\mathcal{C}$, remains\\nindependent of the chosen resolution. Consequently, the left derived functors\\nof $F$ can be constructed analogously to the classical abelian case. Our approach extends the concept of chain homotopy to a non-additive setting\\nusing the technique of imaginary morphisms. Specifically, we utilize the\\napproximate subtractions of Bourn-Janelidze, originally introduced in the\\ncontext of subtractive categories. This method is applicable when $\\\\mathcal{C}$\\nis a pointed regular category with finite coproducts and enough projectives,\\nprovided these projectives are closed under protosplit subobjects, a new\\ncondition introduced in this article and naturally satisfied in the abelian\\ncontext. We further assume that the functor $F$ meets certain exactness\\nconditions: for instance, it may be protoadditive and preserve proper morphisms\\nand binary coproducts - conditions that amount to additivity when $\\\\mathcal{C}$\\nand $\\\\mathcal{E}$ are abelian categories. Within this framework, we develop a basic theory of derived functors, compare\\nit with the simplicial approach, and provide several examples.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.13398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $F\colon \mathcal{C}\到\mathcal{E}$ 是一个从范畴$\mathcal{C}$ 到同调范畴(博尔科-伯恩)或半阿贝尔范畴(詹利泽-马尔基-托伦)$\mathcal{E}$ 的函子。我们研究了在$\mathcal{C}$中对象$X$与通过$\mathcal{C}$中的投影解析定义的函数$F$中的系数的同调保持与所选解析无关的条件。因此,$F$ 的左派生函子可以类比于经典的非等边情况来构造。我们的方法利用虚态量技术,将链同调概念扩展到非增量环境。具体地说,我们利用了伯恩-詹利泽(Bourn-Janelidze)的近似减法(approximate subtractions),它最初是在减法范畴的背景下引入的。这种方法适用于$\mathcal{C}$是一个具有有限协积和足够投影的尖正则范畴,条件是这些投影在原分裂子对象下是封闭的,这是本文引入的一个新条件,在abelian语境中自然满足。我们进一步假定函数 $F$ 满足某些精确性条件:例如,它可以是原相加性的,并且保留适当的态和二元共积--当 $\mathcal{C}$ 和 $\mathcal{E}$ 是阿贝尔范畴时,这些条件相当于相加性。在这个框架内,我们发展了派生函子的基本理论,将其与简单方法进行了比较,并提供了几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-additive derived functors
Let $F\colon \mathcal{C} \to \mathcal{E}$ be a functor from a category $\mathcal{C}$ to a homological (Borceux-Bourn) or semi-abelian (Janelidze-M\'arki-Tholen) category $\mathcal{E}$. We investigate conditions under which the homology of an object $X$ in $\mathcal{C}$ with coefficients in the functor $F$, defined via projective resolutions in $\mathcal{C}$, remains independent of the chosen resolution. Consequently, the left derived functors of $F$ can be constructed analogously to the classical abelian case. Our approach extends the concept of chain homotopy to a non-additive setting using the technique of imaginary morphisms. Specifically, we utilize the approximate subtractions of Bourn-Janelidze, originally introduced in the context of subtractive categories. This method is applicable when $\mathcal{C}$ is a pointed regular category with finite coproducts and enough projectives, provided these projectives are closed under protosplit subobjects, a new condition introduced in this article and naturally satisfied in the abelian context. We further assume that the functor $F$ meets certain exactness conditions: for instance, it may be protoadditive and preserve proper morphisms and binary coproducts - conditions that amount to additivity when $\mathcal{C}$ and $\mathcal{E}$ are abelian categories. Within this framework, we develop a basic theory of derived functors, compare it with the simplicial approach, and provide several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信