$mathrm{Mod}_{mathbb{H}\mathrm{k}$-enriched $\infty$-categories are left $mathbb{H}\mathrm{k}$-module objects of $\mathcal{C}at_{infty}^{mathcal{S}p}$ and $\mathcal{C}at_{\infty}^{mathcal{S}p}$-enriched $\infty$-functors

Matteo Doni
{"title":"$mathrm{Mod}_{mathbb{H}\\mathrm{k}$-enriched $\\infty$-categories are left $mathbb{H}\\mathrm{k}$-module objects of $\\mathcal{C}at_{infty}^{mathcal{S}p}$ and $\\mathcal{C}at_{\\infty}^{mathcal{S}p}$-enriched $\\infty$-functors","authors":"Matteo Doni","doi":"arxiv-2406.15884","DOIUrl":null,"url":null,"abstract":"We establish the feasibility of investigating the theory of\n$\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}$-enriched $\\infty$-categories, where\n$\\mathbb{H}\\mathrm{k}$ is the Eilenberg-Maclane Spectrum associated with a\ncommutative and unitary ring $k$, through the framework of\n$\\mathcal{S}p$-enriched $\\infty$-category theory. In particular, we prove that\nthe $\\infty$-category of $\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}$-enriched\n$\\infty$-categories\n$\\mathcal{C}at_{\\infty}^{\\mathrm{Mod}_{\\mathbb{H}\\mathrm{k}}}$,\n$\\infty$-category of left $\\mathbb{H}\\mathrm{k}$-module objects of the\n$\\infty$-category of $\\mathcal{S}p$-enriched $\\infty$-categories\n$\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$\n$\\mathrm{LMod}_{\\mathbb{H}\\mathrm{k}}(\\mathcal{C}at_{\\infty}^{\\mathcal{S}p})$\nand the $\\infty$-category of $\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}$-enriched\n$\\infty$-functors\n$Fun^{\\mathcal{C}at_{\\infty}^{\\mathcal{S}p}}(\\underline{\\underline{\\mathbb{H}\\mathrm{k}}},\\mathcal{C}at_{\\infty}^{\\mathcal{S}p})$\nare equivalent.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"167 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathrm{Mod}_{\\\\mathbb{H}\\\\mathrm{k}}$-enriched $\\\\infty$-categories are left $\\\\mathbb{H}\\\\mathrm{k}$-module objects of $\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p}$ and $\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p}$-enriched $\\\\infty$-functors\",\"authors\":\"Matteo Doni\",\"doi\":\"arxiv-2406.15884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the feasibility of investigating the theory of\\n$\\\\mathrm{Mod}_{\\\\mathbb{H}\\\\mathrm{k}}$-enriched $\\\\infty$-categories, where\\n$\\\\mathbb{H}\\\\mathrm{k}$ is the Eilenberg-Maclane Spectrum associated with a\\ncommutative and unitary ring $k$, through the framework of\\n$\\\\mathcal{S}p$-enriched $\\\\infty$-category theory. In particular, we prove that\\nthe $\\\\infty$-category of $\\\\mathrm{Mod}_{\\\\mathbb{H}\\\\mathrm{k}}$-enriched\\n$\\\\infty$-categories\\n$\\\\mathcal{C}at_{\\\\infty}^{\\\\mathrm{Mod}_{\\\\mathbb{H}\\\\mathrm{k}}}$,\\n$\\\\infty$-category of left $\\\\mathbb{H}\\\\mathrm{k}$-module objects of the\\n$\\\\infty$-category of $\\\\mathcal{S}p$-enriched $\\\\infty$-categories\\n$\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p}$\\n$\\\\mathrm{LMod}_{\\\\mathbb{H}\\\\mathrm{k}}(\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p})$\\nand the $\\\\infty$-category of $\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p}$-enriched\\n$\\\\infty$-functors\\n$Fun^{\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p}}(\\\\underline{\\\\underline{\\\\mathbb{H}\\\\mathrm{k}}},\\\\mathcal{C}at_{\\\\infty}^{\\\\mathcal{S}p})$\\nare equivalent.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"167 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.15884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过$\mathcal{S}p$富集$\infty$类别理论的框架,建立了研究$\mathrm{Mod}_{\mathbb{H}\mathrm{k}$富集$\infty$类别理论的可行性,其中$\mathbb{H}\mathrm{k}$是与交换环和单元环$k$相关联的艾伦伯格-麦克莱恩谱。特别是,我们证明了$\mathrm{Mod}_\mathbb{H}\mathrm{k}}$-enriched$\infty$-category$/mathcal{C}at_{\infty}^{mathrm{Mod}_\mathbb{H}\mathrm{k}}$的$\infty$-category、$mathcal{S}p$富集$\infty$-的$infty$-类的左$\mathbb{H}\mathrm{k}$-模块对象的$\infty$-类類別$\mathcal{C}at_{\infty}^{mathcal{S}p}$$\mathrm{LMod}_{\mathbb{H}\mathrm{k}}(\mathcal{C}at_{\infty}^{mathcal{S}p})$和 $\infty$-的类别$Fun^{mathcal{C}at_{\infty}^{mathcal{S}p}}$-enriched$infty$-functors$Fun^{mathcal{C}at_{\infty}^{mathcal{S}p}}(underline{underline{mathbb{H}\mathrm{k}}}、\是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched $\infty$-categories are left $\mathbb{H}\mathrm{k}$-module objects of $\mathcal{C}at_{\infty}^{\mathcal{S}p}$ and $\mathcal{C}at_{\infty}^{\mathcal{S}p}$-enriched $\infty$-functors
We establish the feasibility of investigating the theory of $\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched $\infty$-categories, where $\mathbb{H}\mathrm{k}$ is the Eilenberg-Maclane Spectrum associated with a commutative and unitary ring $k$, through the framework of $\mathcal{S}p$-enriched $\infty$-category theory. In particular, we prove that the $\infty$-category of $\mathrm{Mod}_{\mathbb{H}\mathrm{k}}$-enriched $\infty$-categories $\mathcal{C}at_{\infty}^{\mathrm{Mod}_{\mathbb{H}\mathrm{k}}}$, $\infty$-category of left $\mathbb{H}\mathrm{k}$-module objects of the $\infty$-category of $\mathcal{S}p$-enriched $\infty$-categories $\mathcal{C}at_{\infty}^{\mathcal{S}p}$ $\mathrm{LMod}_{\mathbb{H}\mathrm{k}}(\mathcal{C}at_{\infty}^{\mathcal{S}p})$ and the $\infty$-category of $\mathcal{C}at_{\infty}^{\mathcal{S}p}$-enriched $\infty$-functors $Fun^{\mathcal{C}at_{\infty}^{\mathcal{S}p}}(\underline{\underline{\mathbb{H}\mathrm{k}}},\mathcal{C}at_{\infty}^{\mathcal{S}p})$ are equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信