非基于 Nilsolitons 的爱因斯坦索尔夫曼福德构造

Pub Date : 2024-06-24 DOI:10.1007/s00031-024-09864-1
Diego Conti, Federico A. Rossi, Romeo Segnan Dalmasso
{"title":"非基于 Nilsolitons 的爱因斯坦索尔夫曼福德构造","authors":"Diego Conti, Federico A. Rossi, Romeo Segnan Dalmasso","doi":"10.1007/s00031-024-09864-1","DOIUrl":null,"url":null,"abstract":"<p>We construct indefinite Einstein solvmanifolds that are standard, but not of pseudo-Iwasawa type. Thus, the underlying Lie algebras take the form <span>\\(\\mathfrak {g}\\rtimes _D\\mathbb {R}\\)</span>, where <span>\\(\\mathfrak {g}\\)</span> is a nilpotent Lie algebra and <i>D</i> is a nonsymmetric derivation. Considering nonsymmetric derivations has the consequence that <span>\\(\\mathfrak {g}\\)</span> is not a nilsoliton, but satisfies a more general condition. Our construction is based on the notion of nondiagonal triple on a nice diagram. We present an algorithm to classify nondiagonal triples and the associated Einstein metrics. With the use of a computer, we obtain all solutions up to dimension 5, and all solutions in dimension <span>\\(\\le 9\\)</span> that satisfy an additional technical restriction. By comparing curvatures, we show that the Einstein solvmanifolds of dimension <span>\\(\\le 5\\)</span> that we obtain by our construction are not isometric to a standard extension of a nilsoliton.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction of Einstein Solvmanifolds not Based on Nilsolitons\",\"authors\":\"Diego Conti, Federico A. Rossi, Romeo Segnan Dalmasso\",\"doi\":\"10.1007/s00031-024-09864-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct indefinite Einstein solvmanifolds that are standard, but not of pseudo-Iwasawa type. Thus, the underlying Lie algebras take the form <span>\\\\(\\\\mathfrak {g}\\\\rtimes _D\\\\mathbb {R}\\\\)</span>, where <span>\\\\(\\\\mathfrak {g}\\\\)</span> is a nilpotent Lie algebra and <i>D</i> is a nonsymmetric derivation. Considering nonsymmetric derivations has the consequence that <span>\\\\(\\\\mathfrak {g}\\\\)</span> is not a nilsoliton, but satisfies a more general condition. Our construction is based on the notion of nondiagonal triple on a nice diagram. We present an algorithm to classify nondiagonal triples and the associated Einstein metrics. With the use of a computer, we obtain all solutions up to dimension 5, and all solutions in dimension <span>\\\\(\\\\le 9\\\\)</span> that satisfy an additional technical restriction. By comparing curvatures, we show that the Einstein solvmanifolds of dimension <span>\\\\(\\\\le 5\\\\)</span> that we obtain by our construction are not isometric to a standard extension of a nilsoliton.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09864-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09864-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建的不定爱因斯坦索曼菲尔德是标准的,但不是伪岩泽类型的。因此,底层的李代数形式为\(\mathfrak {g}\rtimes _Dmathbb {R}\),其中\(\mathfrak {g}\)是一个无势李代数,D是一个非对称导数。考虑到非对称导数的结果是,\(\mathfrak {g}\) 并不是一个 nilsoliton,而是满足一个更一般的条件。我们的构造基于漂亮图上的非对角三重概念。我们提出了一种算法来分类非对角线三元组和相关的爱因斯坦度量。利用计算机,我们得到了维度为5的所有解,以及满足附加技术限制的维度为(\le 9\)的所有解。通过比较曲率,我们证明了通过我们的构造得到的维数(\le 5)的爱因斯坦索曼菲尔德与尼尔斯利顿的标准扩展不是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Construction of Einstein Solvmanifolds not Based on Nilsolitons

分享
查看原文
A Construction of Einstein Solvmanifolds not Based on Nilsolitons

We construct indefinite Einstein solvmanifolds that are standard, but not of pseudo-Iwasawa type. Thus, the underlying Lie algebras take the form \(\mathfrak {g}\rtimes _D\mathbb {R}\), where \(\mathfrak {g}\) is a nilpotent Lie algebra and D is a nonsymmetric derivation. Considering nonsymmetric derivations has the consequence that \(\mathfrak {g}\) is not a nilsoliton, but satisfies a more general condition. Our construction is based on the notion of nondiagonal triple on a nice diagram. We present an algorithm to classify nondiagonal triples and the associated Einstein metrics. With the use of a computer, we obtain all solutions up to dimension 5, and all solutions in dimension \(\le 9\) that satisfy an additional technical restriction. By comparing curvatures, we show that the Einstein solvmanifolds of dimension \(\le 5\) that we obtain by our construction are not isometric to a standard extension of a nilsoliton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信