{"title":"连通代数群的逆伽罗瓦问题","authors":"Michel Brion, Stefan Schröer","doi":"10.1007/s00031-024-09865-0","DOIUrl":null,"url":null,"abstract":"<p>We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Inverse Galois Problem for Connected Algebraic Groups\",\"authors\":\"Michel Brion, Stefan Schröer\",\"doi\":\"10.1007/s00031-024-09865-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09865-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09865-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Inverse Galois Problem for Connected Algebraic Groups
We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.