连通代数群的逆伽罗瓦问题

Pub Date : 2024-06-27 DOI:10.1007/s00031-024-09865-0
Michel Brion, Stefan Schröer
{"title":"连通代数群的逆伽罗瓦问题","authors":"Michel Brion, Stefan Schröer","doi":"10.1007/s00031-024-09865-0","DOIUrl":null,"url":null,"abstract":"<p>We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Inverse Galois Problem for Connected Algebraic Groups\",\"authors\":\"Michel Brion, Stefan Schröer\",\"doi\":\"10.1007/s00031-024-09865-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09865-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09865-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,任意基域上有限类型的每个连通群方案与某个投影几何积分方案的自变群方案内的同构分量同构。主要内容包括嵌入光滑群方案、等变完备性、轨道闭合的吹大、凯勒微分的拟合理想和布兰查德定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Inverse Galois Problem for Connected Algebraic Groups

We show that each connected group scheme of finite type over an arbitrary ground field is isomorphic to the component of the identity inside the automorphism group scheme of some projective, geometrically integral scheme. The main ingredients are embeddings into smooth group schemes, equivariant completions, blow-ups of orbit closures, Fitting ideals for Kähler differentials, and Blanchard’s Lemma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信