{"title":"壳聚糖/生物玻璃纳米复合材料用于骨组织工程和再生医学:前景广阔的生物材料概述","authors":"Khashayar Khodaverdi, Seyed Morteza Naghib, M.R. Mozafari","doi":"10.2174/0113852728314706240529052535","DOIUrl":null,"url":null,"abstract":": Bioactive glass (BG) shows great potential as a biomaterial for bone regeneration. Chitosan enhances the biological characteristics of BG. Chitosan is the sole commonly utilized natural polysaccharide that may be chemically altered for various purposes and roles. Composite materials formed by combining chitosan bioactive glass (BG) nanoparticles and microparticles are used in this context. Integrating bioactive glasses enhances the mechanical characteristics, bioactivity, and regenerative capacity of the end product. Research indicates that chitosan/BG composites enhance angiogenesis, cell adhesion, and proliferation. Bioglass improves biomineralization and boosts bone extracellular matrix formation by osteoblasts. The current findings demonstrate that the chitosan-glass nanofiber composites can enhance both antibacterial capabilities and bone conductivity. This review examines novel techniques for creating chitosan-based materials for engineering purposes, as well as upcoming difficulties and outlooks.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"161 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan/Bioglass Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: An Overview of Promising Biomaterials\",\"authors\":\"Khashayar Khodaverdi, Seyed Morteza Naghib, M.R. Mozafari\",\"doi\":\"10.2174/0113852728314706240529052535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Bioactive glass (BG) shows great potential as a biomaterial for bone regeneration. Chitosan enhances the biological characteristics of BG. Chitosan is the sole commonly utilized natural polysaccharide that may be chemically altered for various purposes and roles. Composite materials formed by combining chitosan bioactive glass (BG) nanoparticles and microparticles are used in this context. Integrating bioactive glasses enhances the mechanical characteristics, bioactivity, and regenerative capacity of the end product. Research indicates that chitosan/BG composites enhance angiogenesis, cell adhesion, and proliferation. Bioglass improves biomineralization and boosts bone extracellular matrix formation by osteoblasts. The current findings demonstrate that the chitosan-glass nanofiber composites can enhance both antibacterial capabilities and bone conductivity. This review examines novel techniques for creating chitosan-based materials for engineering purposes, as well as upcoming difficulties and outlooks.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728314706240529052535\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728314706240529052535","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Chitosan/Bioglass Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: An Overview of Promising Biomaterials
: Bioactive glass (BG) shows great potential as a biomaterial for bone regeneration. Chitosan enhances the biological characteristics of BG. Chitosan is the sole commonly utilized natural polysaccharide that may be chemically altered for various purposes and roles. Composite materials formed by combining chitosan bioactive glass (BG) nanoparticles and microparticles are used in this context. Integrating bioactive glasses enhances the mechanical characteristics, bioactivity, and regenerative capacity of the end product. Research indicates that chitosan/BG composites enhance angiogenesis, cell adhesion, and proliferation. Bioglass improves biomineralization and boosts bone extracellular matrix formation by osteoblasts. The current findings demonstrate that the chitosan-glass nanofiber composites can enhance both antibacterial capabilities and bone conductivity. This review examines novel techniques for creating chitosan-based materials for engineering purposes, as well as upcoming difficulties and outlooks.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.