利用血浆糖胺聚糖和无细胞 DNA 鉴别肺部良性和恶性疾病

Alvida Qvick, Sinisa Bratulic, Jessica Carlsson, Bianca Stenmark, Christina Karlsson, Jens Nielsen, Francesco Gatto, Gisela Helenius
{"title":"利用血浆糖胺聚糖和无细胞 DNA 鉴别肺部良性和恶性疾病","authors":"Alvida Qvick, Sinisa Bratulic, Jessica Carlsson, Bianca Stenmark, Christina Karlsson, Jens Nielsen, Francesco Gatto, Gisela Helenius","doi":"10.1101/2024.07.01.24309751","DOIUrl":null,"url":null,"abstract":"We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA in plasma to differentiate between lung cancer and benign lung disease. GAGs were analyzed using the MIRAM(R) Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray ionization triple-quadrupole mass spectrometry. We detected two GAGome features, 0S chondroitin sulfate (CS) and 4S CS, with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity (95% CI: 9.2-54.2%) at 96.4% specificity (CI: 95.2-100.0%, n=113). Furthermore, we found that the GAGome score, when combined with a cfDNA test, could increase the sensitivity for lung cancer from 42.6% (95% CI: 31.7-60.6%, cfDNA alone) to 70.5% (CI: 57.4 - 81.5%) at 95% specificity (CI: 75.1-100%, n=74). Notably, the combined GAGome and cfDNA testing improved the sensitivity, especially in early stages, relative to the cfDNA alone. Our findings show that plasma GAGome profiles can enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung cancer diagnostics.","PeriodicalId":501528,"journal":{"name":"medRxiv - Pathology","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma glycosaminoglycans and cell-free DNA to discriminate benign and malignant lung diseases\",\"authors\":\"Alvida Qvick, Sinisa Bratulic, Jessica Carlsson, Bianca Stenmark, Christina Karlsson, Jens Nielsen, Francesco Gatto, Gisela Helenius\",\"doi\":\"10.1101/2024.07.01.24309751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA in plasma to differentiate between lung cancer and benign lung disease. GAGs were analyzed using the MIRAM(R) Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray ionization triple-quadrupole mass spectrometry. We detected two GAGome features, 0S chondroitin sulfate (CS) and 4S CS, with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity (95% CI: 9.2-54.2%) at 96.4% specificity (CI: 95.2-100.0%, n=113). Furthermore, we found that the GAGome score, when combined with a cfDNA test, could increase the sensitivity for lung cancer from 42.6% (95% CI: 31.7-60.6%, cfDNA alone) to 70.5% (CI: 57.4 - 81.5%) at 95% specificity (CI: 75.1-100%, n=74). Notably, the combined GAGome and cfDNA testing improved the sensitivity, especially in early stages, relative to the cfDNA alone. Our findings show that plasma GAGome profiles can enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung cancer diagnostics.\",\"PeriodicalId\":501528,\"journal\":{\"name\":\"medRxiv - Pathology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.01.24309751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.01.24309751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是研究如何利用血浆中的游离糖胺聚糖图谱(GAGomes)和cfDNA来区分肺癌和良性肺病。我们使用 MIRAM(R) Free Glycosaminoglycan Kit 超高效液相色谱法和电喷雾离子化三重四极杆质谱法分析了 GAGs。我们检测到两种具有癌症特异性变化的 GAGome 特征,即 0S 硫酸软骨素(CS)和 4S CS。根据观察到的 GAGome 变化,我们设计了一个预测肺癌的模型。该模型被命名为 GAGome 评分,其检测肺癌的灵敏度为 41.2%(95% CI:9.2-54.2%),特异度为 96.4%(CI:95.2-100.0%,n=113)。此外,我们还发现 GAGome 评分与 cfDNA 检测相结合,可将肺癌的灵敏度从 42.6%(95% CI:31.7-60.6%,单独 cfDNA)提高到 70.5%(CI:57.4-81.5%),特异性为 95%(CI:75.1-100%,n=74)。值得注意的是,相对于单独的 cfDNA 检测,GAGome 和 cfDNA 联合检测提高了灵敏度,尤其是在早期阶段。我们的研究结果表明,血浆 GAGome 图谱可以提高 cfDNA 检测的性能,突出了多组学方法在肺癌诊断中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasma glycosaminoglycans and cell-free DNA to discriminate benign and malignant lung diseases
We aimed to investigate the use of free glycosaminoglycan profiles (GAGomes) and cfDNA in plasma to differentiate between lung cancer and benign lung disease. GAGs were analyzed using the MIRAM(R) Free Glycosaminoglycan Kit with ultra-high-performance liquid chromatography and electrospray ionization triple-quadrupole mass spectrometry. We detected two GAGome features, 0S chondroitin sulfate (CS) and 4S CS, with cancer-specific changes. Based on the observed GAGome changes, we devised a model to predict lung cancer. The model, named the GAGome score, could detect lung cancer with 41.2% sensitivity (95% CI: 9.2-54.2%) at 96.4% specificity (CI: 95.2-100.0%, n=113). Furthermore, we found that the GAGome score, when combined with a cfDNA test, could increase the sensitivity for lung cancer from 42.6% (95% CI: 31.7-60.6%, cfDNA alone) to 70.5% (CI: 57.4 - 81.5%) at 95% specificity (CI: 75.1-100%, n=74). Notably, the combined GAGome and cfDNA testing improved the sensitivity, especially in early stages, relative to the cfDNA alone. Our findings show that plasma GAGome profiles can enhance cfDNA testing performance, highlighting the applicability of a multiomics approach in lung cancer diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信