{"title":"混合动力总成结构中铁路能耗最小化的优化算法:使用新型二维效率图近似的直接方法","authors":"Rahul Radhakrishnan, Moritz Schenker","doi":"10.1177/09544097241237836","DOIUrl":null,"url":null,"abstract":"SEnSOR (Smart Energy Speed Optimizer Rail) is a direct method based optimization algorithm developed at DLR for determining minimum energy speed trajectories for railway vehicles. This paper aims to reduce model error and improve this algorithm for any alternative powertrain architecture. Model simplifications such as projecting the efficiency maps of different train components onto one-dimensional space can lead to inaccuracies and non-optimalities in reality. In this work, 2D section-wise Chua functional representation was used to capture the complete behavior of efficiency maps and discuss its benefits. For this purpose, a new smoothing method was developed. It was observed that there is an average of 6% error in the energy calculation when both, 1D and 2D, models are compared against each other. Previously, solving for different powertrain architectures was time consuming with the requirement of manual modifications to the optimization problem. With a modular approach, the algorithm was modified to flexibly adapt the problem formulation to automatically take into account any changes in powertrain architectures with minimum user input. The benefit is demonstrated by performing optimization on a bi-mode train with three different power sources as developed within the EU-project FCH2RAIL. The advanced algorithm is now capable to adapt to such complex architectures and provide feasible optimization results within a reasonable time.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":"81 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization algorithm for minimizing railway energy consumption in hybrid powertrain architectures: A direct method approach using a novel two-dimensional efficiency map approximation\",\"authors\":\"Rahul Radhakrishnan, Moritz Schenker\",\"doi\":\"10.1177/09544097241237836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SEnSOR (Smart Energy Speed Optimizer Rail) is a direct method based optimization algorithm developed at DLR for determining minimum energy speed trajectories for railway vehicles. This paper aims to reduce model error and improve this algorithm for any alternative powertrain architecture. Model simplifications such as projecting the efficiency maps of different train components onto one-dimensional space can lead to inaccuracies and non-optimalities in reality. In this work, 2D section-wise Chua functional representation was used to capture the complete behavior of efficiency maps and discuss its benefits. For this purpose, a new smoothing method was developed. It was observed that there is an average of 6% error in the energy calculation when both, 1D and 2D, models are compared against each other. Previously, solving for different powertrain architectures was time consuming with the requirement of manual modifications to the optimization problem. With a modular approach, the algorithm was modified to flexibly adapt the problem formulation to automatically take into account any changes in powertrain architectures with minimum user input. The benefit is demonstrated by performing optimization on a bi-mode train with three different power sources as developed within the EU-project FCH2RAIL. The advanced algorithm is now capable to adapt to such complex architectures and provide feasible optimization results within a reasonable time.\",\"PeriodicalId\":54567,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544097241237836\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097241237836","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Optimization algorithm for minimizing railway energy consumption in hybrid powertrain architectures: A direct method approach using a novel two-dimensional efficiency map approximation
SEnSOR (Smart Energy Speed Optimizer Rail) is a direct method based optimization algorithm developed at DLR for determining minimum energy speed trajectories for railway vehicles. This paper aims to reduce model error and improve this algorithm for any alternative powertrain architecture. Model simplifications such as projecting the efficiency maps of different train components onto one-dimensional space can lead to inaccuracies and non-optimalities in reality. In this work, 2D section-wise Chua functional representation was used to capture the complete behavior of efficiency maps and discuss its benefits. For this purpose, a new smoothing method was developed. It was observed that there is an average of 6% error in the energy calculation when both, 1D and 2D, models are compared against each other. Previously, solving for different powertrain architectures was time consuming with the requirement of manual modifications to the optimization problem. With a modular approach, the algorithm was modified to flexibly adapt the problem formulation to automatically take into account any changes in powertrain architectures with minimum user input. The benefit is demonstrated by performing optimization on a bi-mode train with three different power sources as developed within the EU-project FCH2RAIL. The advanced algorithm is now capable to adapt to such complex architectures and provide feasible optimization results within a reasonable time.
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.