Pierre Del Moral, Shulan Hu, Ajay Jasra, Hamza Ruzayqat, Xinyu Wang
{"title":"使用多级随机 Runge-Kutta 方法对部分观测扩散进行贝叶斯参数推断","authors":"Pierre Del Moral, Shulan Hu, Ajay Jasra, Hamza Ruzayqat, Xinyu Wang","doi":"10.1615/int.j.uncertaintyquantification.2024051131","DOIUrl":null,"url":null,"abstract":"We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute\nposterior expected values of the parameters\nfor a pre-specified mean square error (MSE); see \\cite{jasra_bpe_sde}. These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for\nBayesian parameter estimation of static parameters for diffusions. This\ncan be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields.\nFor a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters.\nWe prove\nthat to achieve a MSE of $\\mathcal{O}(\\epsilon^2)$, for $\\epsilon>0$ given, the associated work is $\\mathcal{O}(\\epsilon^{-2})$.\nWhilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods\",\"authors\":\"Pierre Del Moral, Shulan Hu, Ajay Jasra, Hamza Ruzayqat, Xinyu Wang\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute\\nposterior expected values of the parameters\\nfor a pre-specified mean square error (MSE); see \\\\cite{jasra_bpe_sde}. These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for\\nBayesian parameter estimation of static parameters for diffusions. This\\ncan be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields.\\nFor a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters.\\nWe prove\\nthat to achieve a MSE of $\\\\mathcal{O}(\\\\epsilon^2)$, for $\\\\epsilon>0$ given, the associated work is $\\\\mathcal{O}(\\\\epsilon^{-2})$.\\nWhilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051131\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051131","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods
We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute
posterior expected values of the parameters
for a pre-specified mean square error (MSE); see \cite{jasra_bpe_sde}. These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for
Bayesian parameter estimation of static parameters for diffusions. This
can be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields.
For a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters.
We prove
that to achieve a MSE of $\mathcal{O}(\epsilon^2)$, for $\epsilon>0$ given, the associated work is $\mathcal{O}(\epsilon^{-2})$.
Whilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.