{"title":"部分脱粘的刚性椭圆形包合物,脱粘部分含有液体狭缝包合物","authors":"Xu Wang, Peter Schiavone","doi":"10.1177/10812865241257534","DOIUrl":null,"url":null,"abstract":"We derive a closed-form solution to the plane strain problem of a partially debonded rigid elliptical inclusion in which the debonded portion is filled with a liquid slit inclusion when the infinite isotropic elastic matrix is subjected to uniform remote in-plane stresses. The original boundary value problem is reduced to a Riemann–Hilbert problem with discontinuous coefficients, and its analytical solution is derived. By imposing the incompressibility condition of the liquid slit inclusion and balance of moment on a circular disk of infinite radius, we obtain a set of two coupled linear algebraic equations for the two unknowns characterizing the internal uniform hydrostatic tension within the liquid slit inclusion and the rigid body rotation of the rigid elliptical inclusion. As a result, these two unknowns can be uniquely determined revealing the elastic field in the matrix.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A partially debonded rigid elliptical inclusion with a liquid slit inclusion occupying the debonded portion\",\"authors\":\"Xu Wang, Peter Schiavone\",\"doi\":\"10.1177/10812865241257534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a closed-form solution to the plane strain problem of a partially debonded rigid elliptical inclusion in which the debonded portion is filled with a liquid slit inclusion when the infinite isotropic elastic matrix is subjected to uniform remote in-plane stresses. The original boundary value problem is reduced to a Riemann–Hilbert problem with discontinuous coefficients, and its analytical solution is derived. By imposing the incompressibility condition of the liquid slit inclusion and balance of moment on a circular disk of infinite radius, we obtain a set of two coupled linear algebraic equations for the two unknowns characterizing the internal uniform hydrostatic tension within the liquid slit inclusion and the rigid body rotation of the rigid elliptical inclusion. As a result, these two unknowns can be uniquely determined revealing the elastic field in the matrix.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241257534\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241257534","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A partially debonded rigid elliptical inclusion with a liquid slit inclusion occupying the debonded portion
We derive a closed-form solution to the plane strain problem of a partially debonded rigid elliptical inclusion in which the debonded portion is filled with a liquid slit inclusion when the infinite isotropic elastic matrix is subjected to uniform remote in-plane stresses. The original boundary value problem is reduced to a Riemann–Hilbert problem with discontinuous coefficients, and its analytical solution is derived. By imposing the incompressibility condition of the liquid slit inclusion and balance of moment on a circular disk of infinite radius, we obtain a set of two coupled linear algebraic equations for the two unknowns characterizing the internal uniform hydrostatic tension within the liquid slit inclusion and the rigid body rotation of the rigid elliptical inclusion. As a result, these two unknowns can be uniquely determined revealing the elastic field in the matrix.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).