图的生成树的枢轴灰色代码英尺扇形

IF 0.6 4区 数学 Q3 MATHEMATICS
Ben Cameron, Aaron Grubb, Joe Sawada
{"title":"图的生成树的枢轴灰色代码英尺扇形","authors":"Ben Cameron, Aaron Grubb, Joe Sawada","doi":"10.1007/s00373-024-02808-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of listing all spanning trees of a graph <i>G</i> such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in <i>O</i>(1)-amortized time using <i>O</i>(<i>n</i>) space. Additionally, we present <i>O</i>(<i>n</i>)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan\",\"authors\":\"Ben Cameron, Aaron Grubb, Joe Sawada\",\"doi\":\"10.1007/s00373-024-02808-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of listing all spanning trees of a graph <i>G</i> such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in <i>O</i>(1)-amortized time using <i>O</i>(<i>n</i>) space. Additionally, we present <i>O</i>(<i>n</i>)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02808-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02808-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是,如何列出图 G 的所有生成树,使得连续的生成树通过在一个顶点周围旋转一条边而有所不同。这种列表被称为 "枢轴灰色编码",它比已知的生成树 "旋转门 "灰色编码有更严格的条件。大多数旋转门算法都采用标准的边删除/边收缩递归方法,我们证明了这种方法在要求 "枢轴 "属性时所面临的自然挑战。我们的主要成果是发现了一种贪婪策略,可以按照中枢灰色代码顺序列出扇形图的生成树。这是第一种利用最小变化操作穷举生成生成树的贪婪算法。然后,通过研究生成的列表,我们找到了一种递归算法,它能在 O(1)-amortized 时间内使用 O(n) 空间生成相同的列表。此外,我们还提出了在 O(n) 时间内对列表中的生成树进行排序和取消排序的算法。最后,我们还讨论了如何将我们的列表应用于寻找轮子图的枢轴灰色代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan

Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan

We consider the problem of listing all spanning trees of a graph G such that successive trees differ by pivoting a single edge around a vertex. Such a listing is called a “pivot Gray code”, and it has more stringent conditions than known “revolving-door” Gray codes for spanning trees. Most revolving-door algorithms employ a standard edge-deletion/edge-contraction recursive approach which we demonstrate presents natural challenges when requiring the “pivot” property. Our main result is the discovery of a greedy strategy to list the spanning trees of the fan graph in a pivot Gray code order. It is the first greedy algorithm for exhaustively generating spanning trees using such a minimal change operation. The resulting listing is then studied to find a recursive algorithm that produces the same listing in O(1)-amortized time using O(n) space. Additionally, we present O(n)-time algorithms for ranking and unranking the spanning trees for our listing. Finally, we discuss how our listing can be applied to find a pivot Gray code for the wheel graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信