印度原产岩浆蚀变高灰份煤中稀土元素的岩石学和关联性

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Riya Banerjee, Saswati Chakladar, Alok Kumar, Shyamal Kumar Chattopadhyay, Sanchita Chakravarty
{"title":"印度原产岩浆蚀变高灰份煤中稀土元素的岩石学和关联性","authors":"Riya Banerjee, Saswati Chakladar, Alok Kumar, Shyamal Kumar Chattopadhyay, Sanchita Chakravarty","doi":"10.1007/s40789-024-00709-6","DOIUrl":null,"url":null,"abstract":"<p>The extraction of valuables from waste has gained momentum. Thermal influence alters both the organic and inorganic components of coal. Insufficient knowledge on the association of rare earth elements (REEs) with the parent matrix of thermally altered high-ash coals (63% ash) limits the potential for such coals being utilized for isolation of valuables. In this study, we analyzed the distribution and occurrence modes of REEs within a magmatically altered high-ash coal via nine-step sequential extraction, combining Tessier and BCR methods. The total concentration of REEs in the coal sample, on whole coal basis, was found to be 820 ppm, which is significantly higher than the world average. Major mineral oxides were deduced to be those of Si, Fe, Al, Ca, Mg, and Ti. Sequential extraction confirmed that about 66% of HREE and 25% of LREE were included in the residual fraction. LREEs were concluded to be primarily in ionic form, whereas HREEs were speculated to be associated with the TiO<sub>2</sub> phase. XRD analyses showed that thermal alteration affected the dolomite phase specifically, which selectively got removed where carbonate-bound elements were assessed. Petrographic analysis supported the magmatic influence and demonstrated the presence of mosaic structures and pores containing unfused vitrinite, with a reflectance value of 3.6. To summarize, the present study pertaining to delineation of association of valuables in high-ash heat-altered coals from an Eastern coalfield in India can potentially open up new avenues for utilizing such coals, which are otherwise considered waste.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"49 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrology and association of rare earth elements in magmatically altered high-ash coal of Indian origin\",\"authors\":\"Riya Banerjee, Saswati Chakladar, Alok Kumar, Shyamal Kumar Chattopadhyay, Sanchita Chakravarty\",\"doi\":\"10.1007/s40789-024-00709-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The extraction of valuables from waste has gained momentum. Thermal influence alters both the organic and inorganic components of coal. Insufficient knowledge on the association of rare earth elements (REEs) with the parent matrix of thermally altered high-ash coals (63% ash) limits the potential for such coals being utilized for isolation of valuables. In this study, we analyzed the distribution and occurrence modes of REEs within a magmatically altered high-ash coal via nine-step sequential extraction, combining Tessier and BCR methods. The total concentration of REEs in the coal sample, on whole coal basis, was found to be 820 ppm, which is significantly higher than the world average. Major mineral oxides were deduced to be those of Si, Fe, Al, Ca, Mg, and Ti. Sequential extraction confirmed that about 66% of HREE and 25% of LREE were included in the residual fraction. LREEs were concluded to be primarily in ionic form, whereas HREEs were speculated to be associated with the TiO<sub>2</sub> phase. XRD analyses showed that thermal alteration affected the dolomite phase specifically, which selectively got removed where carbonate-bound elements were assessed. Petrographic analysis supported the magmatic influence and demonstrated the presence of mosaic structures and pores containing unfused vitrinite, with a reflectance value of 3.6. To summarize, the present study pertaining to delineation of association of valuables in high-ash heat-altered coals from an Eastern coalfield in India can potentially open up new avenues for utilizing such coals, which are otherwise considered waste.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00709-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00709-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

从废料中提取有价值的物质的工作已经取得了进展。热影响会改变煤的有机和无机成分。由于对稀土元素(REEs)与热蚀变高灰分煤炭(灰分含量为 63%)母质的关联了解不足,限制了利用这类煤炭分离贵重物品的潜力。在这项研究中,我们结合泰西尔法和 BCR 法,通过九步顺序萃取法分析了岩浆蚀变高灰分煤中 REEs 的分布和出现模式。结果发现,以全煤为基准,煤样中 REEs 的总浓度为 820 ppm,明显高于世界平均水平。推断出主要矿物氧化物为硅、铁、铝、钙、镁和钛。顺序萃取证实,残余部分中含有约 66% 的 HREE 和 25% 的 LREE。据推测,LREEs 主要以离子形式存在,而 HREEs 则与 TiO2 相有关。XRD 分析表明,热蚀变特别影响了白云石相,在评估碳酸盐结合元素时,白云石相被选择性地去除。岩相分析证实了岩浆作用的影响,并表明存在镶嵌结构和孔隙,其中含有反射率值为 3.6 的未熔融矾土。总之,本研究是关于印度东部煤田高灰份热变质煤中贵重物品的关联界定,有可能为利用这些煤炭开辟新的途径,否则这些煤炭将被视为废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Petrology and association of rare earth elements in magmatically altered high-ash coal of Indian origin

Petrology and association of rare earth elements in magmatically altered high-ash coal of Indian origin

The extraction of valuables from waste has gained momentum. Thermal influence alters both the organic and inorganic components of coal. Insufficient knowledge on the association of rare earth elements (REEs) with the parent matrix of thermally altered high-ash coals (63% ash) limits the potential for such coals being utilized for isolation of valuables. In this study, we analyzed the distribution and occurrence modes of REEs within a magmatically altered high-ash coal via nine-step sequential extraction, combining Tessier and BCR methods. The total concentration of REEs in the coal sample, on whole coal basis, was found to be 820 ppm, which is significantly higher than the world average. Major mineral oxides were deduced to be those of Si, Fe, Al, Ca, Mg, and Ti. Sequential extraction confirmed that about 66% of HREE and 25% of LREE were included in the residual fraction. LREEs were concluded to be primarily in ionic form, whereas HREEs were speculated to be associated with the TiO2 phase. XRD analyses showed that thermal alteration affected the dolomite phase specifically, which selectively got removed where carbonate-bound elements were assessed. Petrographic analysis supported the magmatic influence and demonstrated the presence of mosaic structures and pores containing unfused vitrinite, with a reflectance value of 3.6. To summarize, the present study pertaining to delineation of association of valuables in high-ash heat-altered coals from an Eastern coalfield in India can potentially open up new avenues for utilizing such coals, which are otherwise considered waste.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信