{"title":"基于机器学习的马宗岭自然保护区落叶阔叶林生物量遥感定量模型构建","authors":"Xuehai Tang, Dagui Yu, Haiyan Lv, Qiangxin Ou, Meiqin Xie, Peng Fan, Qingfeng Huang","doi":"10.1007/s12524-024-01901-6","DOIUrl":null,"url":null,"abstract":"<p>As an important forest type, deciduous broad-leaved forest is crucial for estimating forest carbon sequestration capacity and evaluating forest carbon balance. This study focuses on the natural deciduous broad-leaved forest of Mazongling Nature Reserve in Jinzhai County of China. WorldView-2 images were selected as data source. 36 candidate factors including vegetation indices, texture features, and topographic factors were used for modelling. Three machine learning algorithms (i.e., random forest, k-nearest neighbor, and artificial neural network) were used to establish the optimal quantitative retrieval model for natural deciduous broad-leaved biomass. Results showed that the ANN model was the best predictor with R<sup>2</sup> = 0.69 and RMSE = 31.53 (Mg·ha<sup>−1</sup>). Combining the ANN model with the complete spatial coverage of remote sensing data, we developed a distribution map of natural deciduous broad-leaved biomass in the Mazongling forest farm. The estimated average biomass of the study area was 90.34 ± 47.96 Mg·ha<sup>−1</sup>. In addition, the influence of light saturation on model accuracy is also discussed. This study confirms that remote sensing data in temporal and spatial space can improve the model estimation accuracy.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"77 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Remote Sensing Quantitative Model for Biomass of Deciduous Broad-Leaved Forest in Mazongling Nature Reserve Based on Machine Learning\",\"authors\":\"Xuehai Tang, Dagui Yu, Haiyan Lv, Qiangxin Ou, Meiqin Xie, Peng Fan, Qingfeng Huang\",\"doi\":\"10.1007/s12524-024-01901-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As an important forest type, deciduous broad-leaved forest is crucial for estimating forest carbon sequestration capacity and evaluating forest carbon balance. This study focuses on the natural deciduous broad-leaved forest of Mazongling Nature Reserve in Jinzhai County of China. WorldView-2 images were selected as data source. 36 candidate factors including vegetation indices, texture features, and topographic factors were used for modelling. Three machine learning algorithms (i.e., random forest, k-nearest neighbor, and artificial neural network) were used to establish the optimal quantitative retrieval model for natural deciduous broad-leaved biomass. Results showed that the ANN model was the best predictor with R<sup>2</sup> = 0.69 and RMSE = 31.53 (Mg·ha<sup>−1</sup>). Combining the ANN model with the complete spatial coverage of remote sensing data, we developed a distribution map of natural deciduous broad-leaved biomass in the Mazongling forest farm. The estimated average biomass of the study area was 90.34 ± 47.96 Mg·ha<sup>−1</sup>. In addition, the influence of light saturation on model accuracy is also discussed. This study confirms that remote sensing data in temporal and spatial space can improve the model estimation accuracy.</p>\",\"PeriodicalId\":17510,\"journal\":{\"name\":\"Journal of the Indian Society of Remote Sensing\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12524-024-01901-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01901-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Construction of Remote Sensing Quantitative Model for Biomass of Deciduous Broad-Leaved Forest in Mazongling Nature Reserve Based on Machine Learning
As an important forest type, deciduous broad-leaved forest is crucial for estimating forest carbon sequestration capacity and evaluating forest carbon balance. This study focuses on the natural deciduous broad-leaved forest of Mazongling Nature Reserve in Jinzhai County of China. WorldView-2 images were selected as data source. 36 candidate factors including vegetation indices, texture features, and topographic factors were used for modelling. Three machine learning algorithms (i.e., random forest, k-nearest neighbor, and artificial neural network) were used to establish the optimal quantitative retrieval model for natural deciduous broad-leaved biomass. Results showed that the ANN model was the best predictor with R2 = 0.69 and RMSE = 31.53 (Mg·ha−1). Combining the ANN model with the complete spatial coverage of remote sensing data, we developed a distribution map of natural deciduous broad-leaved biomass in the Mazongling forest farm. The estimated average biomass of the study area was 90.34 ± 47.96 Mg·ha−1. In addition, the influence of light saturation on model accuracy is also discussed. This study confirms that remote sensing data in temporal and spatial space can improve the model estimation accuracy.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.