$$\textrm{Lip}(X,{\mathcal {A}})$$ 的 Bochner-Eberlein-Doss 属性

IF 1.1 2区 数学 Q1 MATHEMATICS
Fatemeh Abtahi, Fatemeh Doustmohammadi, Bahram Ghasemi
{"title":"$$\\textrm{Lip}(X,{\\mathcal {A}})$$ 的 Bochner-Eberlein-Doss 属性","authors":"Fatemeh Abtahi, Fatemeh Doustmohammadi, Bahram Ghasemi","doi":"10.1007/s43037-024-00363-9","DOIUrl":null,"url":null,"abstract":"<p>Let (<i>X</i>, <i>d</i>) be a compact metric space and <span>\\({\\mathcal {A}}\\)</span> be a commutative and semisimple Banach algebra. Some of our recent works are related to the several <span>\\(\\mathrm BSE\\)</span> concepts of the vector-valued Lipschitz algebra <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span>. In this paper as the main purpose, we verify the <span>\\(\\mathrm BED\\)</span> property for <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span>, which is actually different from the <span>\\(\\mathrm BSE\\)</span> feature. We first prove as an elementary result that <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span> is regular if and only if <span>\\({\\mathcal {A}}\\)</span> is so. Then we prove that <span>\\({\\mathcal {A}}\\)</span> is a <span>\\(\\mathrm BED\\)</span> algebra, whenever <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span> is so. Afterwards, we verify the converse of this statement. Indeed, we prove that if <span>\\({\\mathcal {A}}\\)</span> is a <span>\\(\\mathrm BED\\)</span> algebra then <span>\\(C^{0}_{\\textrm{BSE}}(\\Delta (\\textrm{Lip}(X,{\\mathcal {A}})))\\subseteq \\widehat{\\textrm{Lip}(X,{\\mathcal {A}})}\\)</span> and <span>\\(\\widehat{\\textrm{Lip}X\\otimes {\\mathcal {A}}}\\subseteq C^{0}_{\\textrm{BSE}}(\\Delta (\\textrm{Lip}(X,{\\mathcal {A}}))).\\)</span> It follows that if <span>\\(\\textrm{Lip}X\\otimes {\\mathcal {A}}\\)</span> is dense in <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span> then <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span> is a <span>\\(\\mathrm BED\\)</span> algebra, provided that <span>\\({\\mathcal {A}}\\)</span> is so. Moreover, we conclude that the necessary and sufficient condition for the unital and in particular finite dimensional Banach algebra <span>\\({\\mathcal {A}}\\)</span>, to be a <span>\\(\\mathrm BED\\)</span> algebra is that <span>\\(\\textrm{Lip}(X,{\\mathcal {A}})\\)</span> is a <span>\\(\\mathrm BED\\)</span> algebra. Finally, regarding to some known results which disapproves the <span>\\(\\mathrm BSE\\)</span> property for <span>\\(\\textrm{lip}_{\\alpha }(X,{\\mathcal {A}})\\)</span> <span>\\((0&lt;\\alpha &lt;1\\)</span>), we show that for any commutative and semisimple Banach algebra <span>\\({\\mathcal {A}}\\)</span> with <span>\\({{\\mathcal {A}}}_0\\ne \\emptyset \\)</span>, <span>\\(\\textrm{lip}_{\\alpha }(X,{\\mathcal {A}})\\)</span> fails to be a <span>\\(\\mathrm BED\\)</span> algebra, as well.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"42 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bochner–Eberlein–Doss property for $$\\\\textrm{Lip}(X,{\\\\mathcal {A}})$$\",\"authors\":\"Fatemeh Abtahi, Fatemeh Doustmohammadi, Bahram Ghasemi\",\"doi\":\"10.1007/s43037-024-00363-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<i>X</i>, <i>d</i>) be a compact metric space and <span>\\\\({\\\\mathcal {A}}\\\\)</span> be a commutative and semisimple Banach algebra. Some of our recent works are related to the several <span>\\\\(\\\\mathrm BSE\\\\)</span> concepts of the vector-valued Lipschitz algebra <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span>. In this paper as the main purpose, we verify the <span>\\\\(\\\\mathrm BED\\\\)</span> property for <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span>, which is actually different from the <span>\\\\(\\\\mathrm BSE\\\\)</span> feature. We first prove as an elementary result that <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span> is regular if and only if <span>\\\\({\\\\mathcal {A}}\\\\)</span> is so. Then we prove that <span>\\\\({\\\\mathcal {A}}\\\\)</span> is a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra, whenever <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span> is so. Afterwards, we verify the converse of this statement. Indeed, we prove that if <span>\\\\({\\\\mathcal {A}}\\\\)</span> is a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra then <span>\\\\(C^{0}_{\\\\textrm{BSE}}(\\\\Delta (\\\\textrm{Lip}(X,{\\\\mathcal {A}})))\\\\subseteq \\\\widehat{\\\\textrm{Lip}(X,{\\\\mathcal {A}})}\\\\)</span> and <span>\\\\(\\\\widehat{\\\\textrm{Lip}X\\\\otimes {\\\\mathcal {A}}}\\\\subseteq C^{0}_{\\\\textrm{BSE}}(\\\\Delta (\\\\textrm{Lip}(X,{\\\\mathcal {A}}))).\\\\)</span> It follows that if <span>\\\\(\\\\textrm{Lip}X\\\\otimes {\\\\mathcal {A}}\\\\)</span> is dense in <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span> then <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span> is a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra, provided that <span>\\\\({\\\\mathcal {A}}\\\\)</span> is so. Moreover, we conclude that the necessary and sufficient condition for the unital and in particular finite dimensional Banach algebra <span>\\\\({\\\\mathcal {A}}\\\\)</span>, to be a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra is that <span>\\\\(\\\\textrm{Lip}(X,{\\\\mathcal {A}})\\\\)</span> is a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra. Finally, regarding to some known results which disapproves the <span>\\\\(\\\\mathrm BSE\\\\)</span> property for <span>\\\\(\\\\textrm{lip}_{\\\\alpha }(X,{\\\\mathcal {A}})\\\\)</span> <span>\\\\((0&lt;\\\\alpha &lt;1\\\\)</span>), we show that for any commutative and semisimple Banach algebra <span>\\\\({\\\\mathcal {A}}\\\\)</span> with <span>\\\\({{\\\\mathcal {A}}}_0\\\\ne \\\\emptyset \\\\)</span>, <span>\\\\(\\\\textrm{lip}_{\\\\alpha }(X,{\\\\mathcal {A}})\\\\)</span> fails to be a <span>\\\\(\\\\mathrm BED\\\\)</span> algebra, as well.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00363-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00363-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 (X, d) 是一个紧凑的度量空间,({mathcal {A}})是一个交换半简单的巴拿赫代数。我们最近的一些工作与矢量值 Lipschitz 代数的几个 \(\textrm{Lip}(X,{\mathcal {A}})\) 概念有关。本文的主要目的是验证\(\textrm{Lip}(X,{\mathcal {A}})的\(\mathrm BED\) 性质,它实际上不同于\(\mathrm BSE\) 特征。我们首先证明一个基本结果:当且仅当 \({\mathcal {A}}) 是正则时,\(\textrm{Lip}(X,{\mathcal {A}}) 是正则的。然后我们证明,只要\(textrm{Lip}(X,{\mathcal {A}})如此,\({\mathcal {A}})就是一个\(\mathrm BED\) 代数。之后,我们将验证这句话的反义。事实上,我们可以证明,如果 \({mathcal {A}}\) 是一个 \(\mathrm BED\) 代数,那么 \(C^{0}_{textrm{BSE}}(\Delta (\textrm{Lip}(X,{\mathcal {A}})))\subseteq \widehat{\textrm{Lip}(X、和(\widehat{textrm{Lip}X times {\mathcal {A}}}subseteq C^{0}_{\textrm{BSE}}(\Delta (\textrm{Lip}(X,{\mathcal {A}})).\)由此可知,如果 \(\textrm{Lip}X/otimes {\mathcal {A}}\) 在 \(\textrm{Lip}(X,{\mathcal {A}})\) 中是密集的,那么 \(\textrm{Lip}(X,{\mathcal {A}})\) 就是一个 \(\mathrm BED\) 代数,前提是 \({\mathcal {A}}\) 是这样的。此外,我们还得出结论:单元特别是有限维巴拿赫代数 \({\mathcal {A}}\) 是一个 \(\mathrm BED\) 代数的必要条件和充分条件是 \(\textrm{Lip}(X,{\mathcal {A}})\) 是一个 \(\mathrm BED\) 代数。最后,关于一些已知的结果,这些结果否定了 \(\textrm{lip}_{\alpha }(X,{\mathcal {A}})\) 的 \(\textrm{lip}_{\alpha }(X,{\mathcal {A}})\) 属性\((0<\alpha<;1)),我们证明对于任何具有 \({{mathcal {A}}_0\ne \emptyset \) 的交换和半简单巴拿赫代数 \({{mathcal {A}}\), \(\textrm{lip}_{\alpha }(X,{{mathcal {A}})\) 也不能是一个 \(\mathrm BED\) 代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bochner–Eberlein–Doss property for $$\textrm{Lip}(X,{\mathcal {A}})$$

Let (Xd) be a compact metric space and \({\mathcal {A}}\) be a commutative and semisimple Banach algebra. Some of our recent works are related to the several \(\mathrm BSE\) concepts of the vector-valued Lipschitz algebra \(\textrm{Lip}(X,{\mathcal {A}})\). In this paper as the main purpose, we verify the \(\mathrm BED\) property for \(\textrm{Lip}(X,{\mathcal {A}})\), which is actually different from the \(\mathrm BSE\) feature. We first prove as an elementary result that \(\textrm{Lip}(X,{\mathcal {A}})\) is regular if and only if \({\mathcal {A}}\) is so. Then we prove that \({\mathcal {A}}\) is a \(\mathrm BED\) algebra, whenever \(\textrm{Lip}(X,{\mathcal {A}})\) is so. Afterwards, we verify the converse of this statement. Indeed, we prove that if \({\mathcal {A}}\) is a \(\mathrm BED\) algebra then \(C^{0}_{\textrm{BSE}}(\Delta (\textrm{Lip}(X,{\mathcal {A}})))\subseteq \widehat{\textrm{Lip}(X,{\mathcal {A}})}\) and \(\widehat{\textrm{Lip}X\otimes {\mathcal {A}}}\subseteq C^{0}_{\textrm{BSE}}(\Delta (\textrm{Lip}(X,{\mathcal {A}}))).\) It follows that if \(\textrm{Lip}X\otimes {\mathcal {A}}\) is dense in \(\textrm{Lip}(X,{\mathcal {A}})\) then \(\textrm{Lip}(X,{\mathcal {A}})\) is a \(\mathrm BED\) algebra, provided that \({\mathcal {A}}\) is so. Moreover, we conclude that the necessary and sufficient condition for the unital and in particular finite dimensional Banach algebra \({\mathcal {A}}\), to be a \(\mathrm BED\) algebra is that \(\textrm{Lip}(X,{\mathcal {A}})\) is a \(\mathrm BED\) algebra. Finally, regarding to some known results which disapproves the \(\mathrm BSE\) property for \(\textrm{lip}_{\alpha }(X,{\mathcal {A}})\) \((0<\alpha <1\)), we show that for any commutative and semisimple Banach algebra \({\mathcal {A}}\) with \({{\mathcal {A}}}_0\ne \emptyset \), \(\textrm{lip}_{\alpha }(X,{\mathcal {A}})\) fails to be a \(\mathrm BED\) algebra, as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信