全形离散级数对广义惠特克-普朗切尔公式的贡献 II.非管型群

IF 0.5 4区 数学 Q3 MATHEMATICS
Jan Frahm , Gestur Ólafsson , Bent Ørsted
{"title":"全形离散级数对广义惠特克-普朗切尔公式的贡献 II.非管型群","authors":"Jan Frahm ,&nbsp;Gestur Ólafsson ,&nbsp;Bent Ørsted","doi":"10.1016/j.indag.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><div>For every simple Hermitian Lie group <span><math><mi>G</mi></math></span>, we consider a certain maximal parabolic subgroup whose unipotent radical <span><math><mi>N</mi></math></span> is either abelian (if <span><math><mi>G</mi></math></span> is of tube type) or two-step nilpotent (if <span><math><mi>G</mi></math></span> is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, the space of square-integrable sections of the homogeneous vector bundle over <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span> associated with an irreducible unitary representation <span><math><mi>ω</mi></math></span> of <span><math><mi>N</mi></math></span>. Assuming that the central character of <span><math><mi>ω</mi></math></span> is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of <span><math><mi>G</mi></math></span> into <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> and show that the multiplicities are equal to the dimensions of the lowest <span><math><mi>K</mi></math></span>-types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of <span><math><mi>G</mi></math></span>. This kernel function carries all information about the holomorphic discrete series embedding, the lowest <span><math><mi>K</mi></math></span>-type as functions on <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span>, as well as the associated Whittaker vectors.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 337-356"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups\",\"authors\":\"Jan Frahm ,&nbsp;Gestur Ólafsson ,&nbsp;Bent Ørsted\",\"doi\":\"10.1016/j.indag.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every simple Hermitian Lie group <span><math><mi>G</mi></math></span>, we consider a certain maximal parabolic subgroup whose unipotent radical <span><math><mi>N</mi></math></span> is either abelian (if <span><math><mi>G</mi></math></span> is of tube type) or two-step nilpotent (if <span><math><mi>G</mi></math></span> is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, the space of square-integrable sections of the homogeneous vector bundle over <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span> associated with an irreducible unitary representation <span><math><mi>ω</mi></math></span> of <span><math><mi>N</mi></math></span>. Assuming that the central character of <span><math><mi>ω</mi></math></span> is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of <span><math><mi>G</mi></math></span> into <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>/</mo><mi>N</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> and show that the multiplicities are equal to the dimensions of the lowest <span><math><mi>K</mi></math></span>-types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of <span><math><mi>G</mi></math></span>. This kernel function carries all information about the holomorphic discrete series embedding, the lowest <span><math><mi>K</mi></math></span>-type as functions on <span><math><mrow><mi>G</mi><mo>/</mo><mi>N</mi></mrow></math></span>, as well as the associated Whittaker vectors.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 1\",\"pages\":\"Pages 337-356\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000624\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000624","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个简单赫米蒂李群 ,我们都考虑某个最大抛物线子群,它的单势根要么是无性的(如果是管型),要么是两步零势的(如果是非管型)。通过广义惠特克-普朗切尔公式,我们指的是普朗切尔分解,即与.的不可还原单元代表相关联的均相向量束的平方可积分截面空间。 假设.的中心特征包含在某个锥体中,我们构造了.的所有全形离散序列代表的嵌入,并证明其乘数等于最低类型的维数。这个核函数包含了全态离散级数嵌入的所有信息、作为函数的最低类型以及相关的惠特克向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups
For every simple Hermitian Lie group G, we consider a certain maximal parabolic subgroup whose unipotent radical N is either abelian (if G is of tube type) or two-step nilpotent (if G is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of L2(G/N,ω), the space of square-integrable sections of the homogeneous vector bundle over G/N associated with an irreducible unitary representation ω of N. Assuming that the central character of ω is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of G into L2(G/N,ω) and show that the multiplicities are equal to the dimensions of the lowest K-types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of G. This kernel function carries all information about the holomorphic discrete series embedding, the lowest K-type as functions on G/N, as well as the associated Whittaker vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信