{"title":"全形离散级数对广义惠特克-普朗切尔公式的贡献 II.非管型群","authors":"Jan Frahm, Gestur Ólafsson, Bent Ørsted","doi":"10.1016/j.indag.2024.05.012","DOIUrl":null,"url":null,"abstract":"For every simple Hermitian Lie group , we consider a certain maximal parabolic subgroup whose unipotent radical is either abelian (if is of tube type) or two-step nilpotent (if is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of , the space of square-integrable sections of the homogeneous vector bundle over associated with an irreducible unitary representation of . Assuming that the central character of is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of into and show that the multiplicities are equal to the dimensions of the lowest -types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of . This kernel function carries all information about the holomorphic discrete series embedding, the lowest -type as functions on , as well as the associated Whittaker vectors.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups\",\"authors\":\"Jan Frahm, Gestur Ólafsson, Bent Ørsted\",\"doi\":\"10.1016/j.indag.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every simple Hermitian Lie group , we consider a certain maximal parabolic subgroup whose unipotent radical is either abelian (if is of tube type) or two-step nilpotent (if is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of , the space of square-integrable sections of the homogeneous vector bundle over associated with an irreducible unitary representation of . Assuming that the central character of is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of into and show that the multiplicities are equal to the dimensions of the lowest -types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of . This kernel function carries all information about the holomorphic discrete series embedding, the lowest -type as functions on , as well as the associated Whittaker vectors.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.05.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.05.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula II. Non-tube type groups
For every simple Hermitian Lie group , we consider a certain maximal parabolic subgroup whose unipotent radical is either abelian (if is of tube type) or two-step nilpotent (if is of non-tube type). By the generalized Whittaker Plancherel formula we mean the Plancherel decomposition of , the space of square-integrable sections of the homogeneous vector bundle over associated with an irreducible unitary representation of . Assuming that the central character of is contained in a certain cone, we construct embeddings of all holomorphic discrete series representations of into and show that the multiplicities are equal to the dimensions of the lowest -types. The construction is in terms of a kernel function which can be explicitly defined using certain projections inside a complexification of . This kernel function carries all information about the holomorphic discrete series embedding, the lowest -type as functions on , as well as the associated Whittaker vectors.