类数、小野不变式和一些有趣的素数

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"类数、小野不变式和一些有趣的素数","authors":"","doi":"10.1016/j.indag.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Our aim is to find all the prime numbers <span><math><mi>p</mi></math></span> such that <span><math><mrow><mi>p</mi><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> has at most two different prime factors, for all the odd integers <span><math><mi>x</mi></math></span> such that <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>p</mi></mrow></math></span>. We solve entirely the cases <span><math><mrow><mi>p</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span>, using the knowledge of the quadratic imaginary number fields with class numbers 4, 1 and 2 respectively. The case <span><math><mrow><mi>p</mi><mo>≡</mo><mn>7</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span> is not completely solved. Taking into account a result of Stéphane Louboutin, we prove that there is at most one value <span><math><mrow><mi>p</mi><mo>≡</mo><mn>7</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span> besides our list. Assuming a Restricted Riemann Hypothesis, the list is complete. In the last section of the paper we give a short sketch for the general problem: find all odd integers <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> has at most two different prime factors, for all the odd integers <span><math><mi>x</mi></math></span> such that <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>n</mi></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 6","pages":"Pages 1249-1258"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class numbers, Ono invariants and some interesting primes\",\"authors\":\"\",\"doi\":\"10.1016/j.indag.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our aim is to find all the prime numbers <span><math><mi>p</mi></math></span> such that <span><math><mrow><mi>p</mi><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> has at most two different prime factors, for all the odd integers <span><math><mi>x</mi></math></span> such that <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>p</mi></mrow></math></span>. We solve entirely the cases <span><math><mrow><mi>p</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span>, using the knowledge of the quadratic imaginary number fields with class numbers 4, 1 and 2 respectively. The case <span><math><mrow><mi>p</mi><mo>≡</mo><mn>7</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span> is not completely solved. Taking into account a result of Stéphane Louboutin, we prove that there is at most one value <span><math><mrow><mi>p</mi><mo>≡</mo><mn>7</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>8</mn><mo>)</mo></mrow></mrow></math></span> besides our list. Assuming a Restricted Riemann Hypothesis, the list is complete. In the last section of the paper we give a short sketch for the general problem: find all odd integers <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> such that <span><math><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> has at most two different prime factors, for all the odd integers <span><math><mi>x</mi></math></span> such that <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>n</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 6\",\"pages\":\"Pages 1249-1258\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000661\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000661","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是找出所有质数,使得它们最多有两个不同的质因数,对于所有奇整数,使得 。我们利用类数分别为 4、1 和 2 的二次虚数域的知识,完全解决了 、 、 的情况。这种情况并没有完全解决。考虑到斯特凡-鲁布托(Stéphane Louboutin)的一个结果,我们证明除了我们的列表之外,最多还有一个值。假设存在限制黎曼假说,那么这个列表就是完整的。在本文的最后一部分,我们给出了一般问题的简述:找出所有奇整数,使得它最多有两个不同的质因数,对于所有奇整数,使得 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class numbers, Ono invariants and some interesting primes
Our aim is to find all the prime numbers p such that p+x2 has at most two different prime factors, for all the odd integers x such that x2p. We solve entirely the cases p1,3,5(mod8), using the knowledge of the quadratic imaginary number fields with class numbers 4, 1 and 2 respectively. The case p7(mod8) is not completely solved. Taking into account a result of Stéphane Louboutin, we prove that there is at most one value p7(mod8) besides our list. Assuming a Restricted Riemann Hypothesis, the list is complete. In the last section of the paper we give a short sketch for the general problem: find all odd integers n>1 such that n+x2 has at most two different prime factors, for all the odd integers x such that x2n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信