π$的两期马钦式的合理近似值

Sanjar M. Abrarov, Rehan Siddiqui, Rajinder Kumar Jagpal, Brendan M. Quine
{"title":"π$的两期马钦式的合理近似值","authors":"Sanjar M. Abrarov, Rehan Siddiqui, Rajinder Kumar Jagpal, Brendan M. Quine","doi":"arxiv-2406.08510","DOIUrl":null,"url":null,"abstract":"In this work, we consider the properties of the two-term Machin-like formula\nand develop an algorithm for computing digits of $\\pi$ by using its rational\napproximation. In this approximation, both terms are constructed by using a\nrepresentation of $1/\\pi$ in the binary form. This approach provides the\nsquared convergence in computing digits of $\\pi$ without any trigonometric\nfunctions and surd numbers. The Mathematica codes showing some examples are\npresented.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rational approximation of the two-term Machin-like formula for $π$\",\"authors\":\"Sanjar M. Abrarov, Rehan Siddiqui, Rajinder Kumar Jagpal, Brendan M. Quine\",\"doi\":\"arxiv-2406.08510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the properties of the two-term Machin-like formula\\nand develop an algorithm for computing digits of $\\\\pi$ by using its rational\\napproximation. In this approximation, both terms are constructed by using a\\nrepresentation of $1/\\\\pi$ in the binary form. This approach provides the\\nsquared convergence in computing digits of $\\\\pi$ without any trigonometric\\nfunctions and surd numbers. The Mathematica codes showing some examples are\\npresented.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了双项马钦类公式的性质,并开发了一种利用其有理近似值计算 $\pi$ 位数的算法。在这种近似中,两个项都是通过使用二进制形式的 1/\pi$ 来构造的。这种方法在计算 $\pi$ 的位数时提供了平方收敛性,而不需要任何三角函数和苏德数。本文给出了一些示例的 Mathematica 代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rational approximation of the two-term Machin-like formula for $π$
In this work, we consider the properties of the two-term Machin-like formula and develop an algorithm for computing digits of $\pi$ by using its rational approximation. In this approximation, both terms are constructed by using a representation of $1/\pi$ in the binary form. This approach provides the squared convergence in computing digits of $\pi$ without any trigonometric functions and surd numbers. The Mathematica codes showing some examples are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信