夹层黎曼假设

R. C. McPhedran
{"title":"夹层黎曼假设","authors":"R. C. McPhedran","doi":"arxiv-2407.00060","DOIUrl":null,"url":null,"abstract":"We consider a system of three analytic functions, two of which are known to\nhave all their zeros on the critical line $\\Re (s)=\\sigma=1/2$. We construct\ninequalities which constrain the third function, $\\xi(s)$, on $\\Im(s)=0$ to lie\nbetween the other two functions, in a sandwich structure. We investigate what\ncan be said about the location of zeros and radius of convergence of expansions\nof $\\xi(s)$, with promising results.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sandwiching the Riemann hypothesis\",\"authors\":\"R. C. McPhedran\",\"doi\":\"arxiv-2407.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a system of three analytic functions, two of which are known to\\nhave all their zeros on the critical line $\\\\Re (s)=\\\\sigma=1/2$. We construct\\ninequalities which constrain the third function, $\\\\xi(s)$, on $\\\\Im(s)=0$ to lie\\nbetween the other two functions, in a sandwich structure. We investigate what\\ncan be said about the location of zeros and radius of convergence of expansions\\nof $\\\\xi(s)$, with promising results.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个由三个解析函数组成的系统,已知其中两个函数的所有零点都在临界线 $\Re (s)=\sigma=1/2$ 上。我们构建了一个约束条件,在 $\Im(s)=0$ 上约束第三个函数 $\xi(s)$,使其位于其他两个函数之间,呈三明治结构。我们研究了$\xi(s)$展开的零点位置和收敛半径,结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sandwiching the Riemann hypothesis
We consider a system of three analytic functions, two of which are known to have all their zeros on the critical line $\Re (s)=\sigma=1/2$. We construct inequalities which constrain the third function, $\xi(s)$, on $\Im(s)=0$ to lie between the other two functions, in a sandwich structure. We investigate what can be said about the location of zeros and radius of convergence of expansions of $\xi(s)$, with promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信