基于新广义分式幂级数的分式和经典微分方程求解新方法

Youness Assebbane, Mohamed Echchehira, Mohamed Bouaouid, Mustapha Atraoui
{"title":"基于新广义分式幂级数的分式和经典微分方程求解新方法","authors":"Youness Assebbane, Mohamed Echchehira, Mohamed Bouaouid, Mustapha Atraoui","doi":"arxiv-2406.16980","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to introduce an algorithm for solving\nfractional and classical differential equations based on a new generalized\nfractional power series. The algorithm relies on expanding the solution of an\nFDE or an ODE as a generalized power series, shedding light on the choice of\nthe exponent for the monomials. Furthermore, it accommodates situations where\nterms in the equation are multiplied by $t^{\\alpha}$for example. The key\ncontribution is how the exponents for these terms are chosen, which is\ndifferent from traditional methods.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Method For Solving Fractional And Classical Differential Equations Based On a New Generalized Fractional Power Series\",\"authors\":\"Youness Assebbane, Mohamed Echchehira, Mohamed Bouaouid, Mustapha Atraoui\",\"doi\":\"arxiv-2406.16980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to introduce an algorithm for solving\\nfractional and classical differential equations based on a new generalized\\nfractional power series. The algorithm relies on expanding the solution of an\\nFDE or an ODE as a generalized power series, shedding light on the choice of\\nthe exponent for the monomials. Furthermore, it accommodates situations where\\nterms in the equation are multiplied by $t^{\\\\alpha}$for example. The key\\ncontribution is how the exponents for these terms are chosen, which is\\ndifferent from traditional methods.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是介绍一种基于新的广义分数幂级数求解分数微分方程和经典微分方程的算法。该算法依赖于将微分方程或微分代数方程的解扩展为广义幂级数,从而揭示了单项式指数的选择。此外,它还适用于方程中的参数乘以 $t^{alpha}$ 等情况。其关键贡献在于如何选择这些项的指数,这与传统方法不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method For Solving Fractional And Classical Differential Equations Based On a New Generalized Fractional Power Series
The main objective of this paper is to introduce an algorithm for solving fractional and classical differential equations based on a new generalized fractional power series. The algorithm relies on expanding the solution of an FDE or an ODE as a generalized power series, shedding light on the choice of the exponent for the monomials. Furthermore, it accommodates situations where terms in the equation are multiplied by $t^{\alpha}$for example. The key contribution is how the exponents for these terms are chosen, which is different from traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信