散射和稀疏分区及其应用

IF 0.9 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Arnold Filtser
{"title":"散射和稀疏分区及其应用","authors":"Arnold Filtser","doi":"10.1145/3672562","DOIUrl":null,"url":null,"abstract":"<p>A partition \\(\\mathcal{P}\\) of a weighted graph \\(G\\) is \\((\\sigma,\\tau,\\Delta)\\)-sparse if every cluster has diameter at most \\(\\Delta\\), and every ball of radius \\(\\Delta/\\sigma\\) intersects at most \\(\\tau\\) clusters. Similarly, \\(\\mathcal{P}\\) is \\((\\sigma,\\tau,\\Delta)\\)-scattering if instead for balls we require that every shortest path of length at most \\(\\Delta/\\sigma\\) intersects at most \\(\\tau\\) clusters. Given a graph \\(G\\) that admits a \\((\\sigma,\\tau,\\Delta)\\)-sparse partition for all \\(\\Delta \\gt 0\\), Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch \\(O(\\tau\\sigma^{2}\\log_{\\tau}n)\\). Given a graph \\(G\\) that admits a \\((\\sigma,\\tau,\\Delta)\\)-scattering partition for all \\(\\Delta \\gt 0\\), we construct a solution for the Steiner Point Removal problem with stretch \\(O(\\tau^{3}\\sigma^{3})\\). We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"78 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering and Sparse Partitions, and their Applications\",\"authors\":\"Arnold Filtser\",\"doi\":\"10.1145/3672562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A partition \\\\(\\\\mathcal{P}\\\\) of a weighted graph \\\\(G\\\\) is \\\\((\\\\sigma,\\\\tau,\\\\Delta)\\\\)-sparse if every cluster has diameter at most \\\\(\\\\Delta\\\\), and every ball of radius \\\\(\\\\Delta/\\\\sigma\\\\) intersects at most \\\\(\\\\tau\\\\) clusters. Similarly, \\\\(\\\\mathcal{P}\\\\) is \\\\((\\\\sigma,\\\\tau,\\\\Delta)\\\\)-scattering if instead for balls we require that every shortest path of length at most \\\\(\\\\Delta/\\\\sigma\\\\) intersects at most \\\\(\\\\tau\\\\) clusters. Given a graph \\\\(G\\\\) that admits a \\\\((\\\\sigma,\\\\tau,\\\\Delta)\\\\)-sparse partition for all \\\\(\\\\Delta \\\\gt 0\\\\), Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch \\\\(O(\\\\tau\\\\sigma^{2}\\\\log_{\\\\tau}n)\\\\). Given a graph \\\\(G\\\\) that admits a \\\\((\\\\sigma,\\\\tau,\\\\Delta)\\\\)-scattering partition for all \\\\(\\\\Delta \\\\gt 0\\\\), we construct a solution for the Steiner Point Removal problem with stretch \\\\(O(\\\\tau^{3}\\\\sigma^{3})\\\\). We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3672562\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672562","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

如果每个簇的直径都是\(\delta\),并且每个半径为\(\delta/\sigma\)的球最多与\(\tau\)个簇相交,那么加权图(G)的一个分区(\(\mathcal{P}\)就是\((\sigma,\tau,\delta)\)-稀疏的。类似地,如果我们不要求球,而是要求每条最短路径的长度最多与((\sigma,\tau,\Delta))簇相交,那么这个图就是(((\sigma,\tau,\Delta))散射的。给定一个图(G),该图在所有的((\delta \gt 0\)情况下都允许一个((\sigma,\tau,\Delta))稀疏的分区,Jia 等人[STOC05]为通用斯坦纳树问题(以及通用 TSP)构造了一个具有拉伸(O(\tau\sigma^{2}\log_{/tau}n)\)的解。给定一个图(G),在所有的((\delta \gt 0\)情况下都允许一个((\sigma,\tau,\delta))散布分区,我们就可以用拉伸(O(\tau^{3}\sigma^{3})为斯泰纳点移除问题构造一个解。)然后,我们为各种不同的图族构造了稀疏和分散分区,得到了通用斯坦纳树和斯坦纳点移除问题的许多新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering and Sparse Partitions, and their Applications

A partition \(\mathcal{P}\) of a weighted graph \(G\) is \((\sigma,\tau,\Delta)\)-sparse if every cluster has diameter at most \(\Delta\), and every ball of radius \(\Delta/\sigma\) intersects at most \(\tau\) clusters. Similarly, \(\mathcal{P}\) is \((\sigma,\tau,\Delta)\)-scattering if instead for balls we require that every shortest path of length at most \(\Delta/\sigma\) intersects at most \(\tau\) clusters. Given a graph \(G\) that admits a \((\sigma,\tau,\Delta)\)-sparse partition for all \(\Delta \gt 0\), Jia et al. [STOC05] constructed a solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch \(O(\tau\sigma^{2}\log_{\tau}n)\). Given a graph \(G\) that admits a \((\sigma,\tau,\Delta)\)-scattering partition for all \(\Delta \gt 0\), we construct a solution for the Steiner Point Removal problem with stretch \(O(\tau^{3}\sigma^{3})\). We then construct sparse and scattering partitions for various different graph families, receiving many new results for the Universal Steiner Tree and Steiner Point Removal problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Algorithms
ACM Transactions on Algorithms COMPUTER SCIENCE, THEORY & METHODS-MATHEMATICS, APPLIED
CiteScore
3.30
自引率
0.00%
发文量
50
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include combinatorial searches and objects; counting; discrete optimization and approximation; randomization and quantum computation; parallel and distributed computation; algorithms for graphs, geometry, arithmetic, number theory, strings; on-line analysis; cryptography; coding; data compression; learning algorithms; methods of algorithmic analysis; discrete algorithms for application areas such as biology, economics, game theory, communication, computer systems and architecture, hardware design, scientific computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信