{"title":"关于一类非一般无常曲面的 Lang-Trotter 猜想","authors":"Mohammed Amin Amri","doi":"10.1007/s11139-024-00884-9","DOIUrl":null,"url":null,"abstract":"<p>In the present article, we formulate a conjectural uniform error term in the Chebotarev–Sato–Tate distribution for abelian surfaces <span>\\(\\mathbb {Q}\\)</span>-isogenous to a product of not <span>\\(\\overline{\\mathbb {Q}}\\)</span>-isogenous non-CM-elliptic curves, established by the author in Amri (Eur J Math, 2023. https://doi.org/10.1007/s40879-023-00682-5, Theorem 1.1). As a consequence, we provide a conditional direct proof to the generalized Lang–Trotter conjecture recently formulated and studied in Chen et al. (Ramanujan J, 2022).</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Lang–Trotter conjecture for a class of non-generic abelian surfaces\",\"authors\":\"Mohammed Amin Amri\",\"doi\":\"10.1007/s11139-024-00884-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present article, we formulate a conjectural uniform error term in the Chebotarev–Sato–Tate distribution for abelian surfaces <span>\\\\(\\\\mathbb {Q}\\\\)</span>-isogenous to a product of not <span>\\\\(\\\\overline{\\\\mathbb {Q}}\\\\)</span>-isogenous non-CM-elliptic curves, established by the author in Amri (Eur J Math, 2023. https://doi.org/10.1007/s40879-023-00682-5, Theorem 1.1). As a consequence, we provide a conditional direct proof to the generalized Lang–Trotter conjecture recently formulated and studied in Chen et al. (Ramanujan J, 2022).</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00884-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00884-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了作者在 Amri (Eur J Math, 2023. https://doi.org/10.1007/s40879-023-00682-5, Theorem 1.1) 中建立的无边际曲面 \(\mathbb {Q}\)-isogenous to a product of not \(\overline{mathbb {Q}}\)-isogenous non-CM-elliptic curves 的切博塔列夫-萨托-塔特分布中的均匀误差项猜想。因此,我们为最近在 Chen 等人 (Ramanujan J, 2022) 中提出和研究的广义 Lang-Trotter 猜想提供了一个有条件的直接证明。
On the Lang–Trotter conjecture for a class of non-generic abelian surfaces
In the present article, we formulate a conjectural uniform error term in the Chebotarev–Sato–Tate distribution for abelian surfaces \(\mathbb {Q}\)-isogenous to a product of not \(\overline{\mathbb {Q}}\)-isogenous non-CM-elliptic curves, established by the author in Amri (Eur J Math, 2023. https://doi.org/10.1007/s40879-023-00682-5, Theorem 1.1). As a consequence, we provide a conditional direct proof to the generalized Lang–Trotter conjecture recently formulated and studied in Chen et al. (Ramanujan J, 2022).