Qian Xu, Lixin Ma, Ruiyun Zhou, Chen Wang, Junwen Bai, Li Sun, Jianrong Cai
{"title":"利用挥发性有机化合物成分分析检测柑橘黄龙病感染情况","authors":"Qian Xu, Lixin Ma, Ruiyun Zhou, Chen Wang, Junwen Bai, Li Sun, Jianrong Cai","doi":"10.1111/ppa.13964","DOIUrl":null,"url":null,"abstract":"Huanglongbing (HLB) is caused by “<jats:italic>Candidatus</jats:italic> Liberibacter asiaticus” and is spread by citrus psyllids. It is a highly damaging and infectious disease of citrus for which there is no reliable treatment. Timely detection and removal of diseased trees is an effective strategy to control HLB. Various citrus cultivars infected with HLB exhibit distinct symptoms, posing a challenge to generalize HLB detection methods across multiple cultivars. Volatile organic compounds (VOCs) in HLB‐infected leaves from cultivars grown in different regions were comprehensively analysed by gas chromatography–mass spectrometry (GC‐MS) and gas chromatography‐ion mobility spectrometry (GC‐IMS), aiming to establish a new generalized HLB detection method applicable to a range of citrus cultivars. The changes in VOCs were analysed in leaves of four citrus cultivars after infection with HLB. The results showed that there was a similar response to HLB infection in different citrus cultivars, and this response was reflected in both the concentration and type of VOCs. By combining GC‐MS and GC‐IMS with orthogonal partial least squares discriminant analysis (OPLS‐DA) model, the accurate identification of the HLB infection status of different citrus cultivars was achieved, with the prediction indices reaching 0.994 for GC‐MS and 0.972 for GC‐IMS. In addition, 27 compounds were identified that were significantly different between citrus cultivars affected by HLB and healthy plants. This study provides valuable insights into the changes in VOCs in citrus cultivars after HLB infection and lays the theoretical foundation for VOC‐based HLB detection strategies.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of huanglongbing infection in citrus using compositional analysis of volatile organic compounds\",\"authors\":\"Qian Xu, Lixin Ma, Ruiyun Zhou, Chen Wang, Junwen Bai, Li Sun, Jianrong Cai\",\"doi\":\"10.1111/ppa.13964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Huanglongbing (HLB) is caused by “<jats:italic>Candidatus</jats:italic> Liberibacter asiaticus” and is spread by citrus psyllids. It is a highly damaging and infectious disease of citrus for which there is no reliable treatment. Timely detection and removal of diseased trees is an effective strategy to control HLB. Various citrus cultivars infected with HLB exhibit distinct symptoms, posing a challenge to generalize HLB detection methods across multiple cultivars. Volatile organic compounds (VOCs) in HLB‐infected leaves from cultivars grown in different regions were comprehensively analysed by gas chromatography–mass spectrometry (GC‐MS) and gas chromatography‐ion mobility spectrometry (GC‐IMS), aiming to establish a new generalized HLB detection method applicable to a range of citrus cultivars. The changes in VOCs were analysed in leaves of four citrus cultivars after infection with HLB. The results showed that there was a similar response to HLB infection in different citrus cultivars, and this response was reflected in both the concentration and type of VOCs. By combining GC‐MS and GC‐IMS with orthogonal partial least squares discriminant analysis (OPLS‐DA) model, the accurate identification of the HLB infection status of different citrus cultivars was achieved, with the prediction indices reaching 0.994 for GC‐MS and 0.972 for GC‐IMS. In addition, 27 compounds were identified that were significantly different between citrus cultivars affected by HLB and healthy plants. This study provides valuable insights into the changes in VOCs in citrus cultivars after HLB infection and lays the theoretical foundation for VOC‐based HLB detection strategies.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13964\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13964","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Detection of huanglongbing infection in citrus using compositional analysis of volatile organic compounds
Huanglongbing (HLB) is caused by “Candidatus Liberibacter asiaticus” and is spread by citrus psyllids. It is a highly damaging and infectious disease of citrus for which there is no reliable treatment. Timely detection and removal of diseased trees is an effective strategy to control HLB. Various citrus cultivars infected with HLB exhibit distinct symptoms, posing a challenge to generalize HLB detection methods across multiple cultivars. Volatile organic compounds (VOCs) in HLB‐infected leaves from cultivars grown in different regions were comprehensively analysed by gas chromatography–mass spectrometry (GC‐MS) and gas chromatography‐ion mobility spectrometry (GC‐IMS), aiming to establish a new generalized HLB detection method applicable to a range of citrus cultivars. The changes in VOCs were analysed in leaves of four citrus cultivars after infection with HLB. The results showed that there was a similar response to HLB infection in different citrus cultivars, and this response was reflected in both the concentration and type of VOCs. By combining GC‐MS and GC‐IMS with orthogonal partial least squares discriminant analysis (OPLS‐DA) model, the accurate identification of the HLB infection status of different citrus cultivars was achieved, with the prediction indices reaching 0.994 for GC‐MS and 0.972 for GC‐IMS. In addition, 27 compounds were identified that were significantly different between citrus cultivars affected by HLB and healthy plants. This study provides valuable insights into the changes in VOCs in citrus cultivars after HLB infection and lays the theoretical foundation for VOC‐based HLB detection strategies.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.