{"title":"通过变压器改进非寿险精算定价模型","authors":"Alexej Brauer","doi":"10.1007/s13385-024-00388-2","DOIUrl":null,"url":null,"abstract":"<p>Currently, there is a lot of research in the field of neural networks for non-life insurance pricing. The usual goal is to improve the predictive power of actuarial pricing and behavioral models via neural networks while building upon the generalized linear model, which is the current industry standard. Our paper contributes to this current journey via novel methods to enhance actuarial non-life models with transformer models for tabular data. We build here upon the foundation laid out by the combined actuarial neural network as well as the localGLMnet and enhance those models via the feature tokenizer transformer. The manuscript demonstrates the performance of the proposed methods on a real-world claim frequency dataset and compares them with several benchmark models such as generalized linear models, feed-forward neural networks, combined actuarial neural networks, LocalGLMnet, and the pure feature tokenizer transformer. The paper shows that the new methods can achieve better results than the benchmark models while preserving the structure of the underlying actuarial models, thereby inheriting and retaining their advantages. The paper also discusses the practical implications and challenges of applying transformer models in actuarial settings.</p>","PeriodicalId":44305,"journal":{"name":"European Actuarial Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing actuarial non-life pricing models via transformers\",\"authors\":\"Alexej Brauer\",\"doi\":\"10.1007/s13385-024-00388-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, there is a lot of research in the field of neural networks for non-life insurance pricing. The usual goal is to improve the predictive power of actuarial pricing and behavioral models via neural networks while building upon the generalized linear model, which is the current industry standard. Our paper contributes to this current journey via novel methods to enhance actuarial non-life models with transformer models for tabular data. We build here upon the foundation laid out by the combined actuarial neural network as well as the localGLMnet and enhance those models via the feature tokenizer transformer. The manuscript demonstrates the performance of the proposed methods on a real-world claim frequency dataset and compares them with several benchmark models such as generalized linear models, feed-forward neural networks, combined actuarial neural networks, LocalGLMnet, and the pure feature tokenizer transformer. The paper shows that the new methods can achieve better results than the benchmark models while preserving the structure of the underlying actuarial models, thereby inheriting and retaining their advantages. The paper also discusses the practical implications and challenges of applying transformer models in actuarial settings.</p>\",\"PeriodicalId\":44305,\"journal\":{\"name\":\"European Actuarial Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Actuarial Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13385-024-00388-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Actuarial Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13385-024-00388-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Enhancing actuarial non-life pricing models via transformers
Currently, there is a lot of research in the field of neural networks for non-life insurance pricing. The usual goal is to improve the predictive power of actuarial pricing and behavioral models via neural networks while building upon the generalized linear model, which is the current industry standard. Our paper contributes to this current journey via novel methods to enhance actuarial non-life models with transformer models for tabular data. We build here upon the foundation laid out by the combined actuarial neural network as well as the localGLMnet and enhance those models via the feature tokenizer transformer. The manuscript demonstrates the performance of the proposed methods on a real-world claim frequency dataset and compares them with several benchmark models such as generalized linear models, feed-forward neural networks, combined actuarial neural networks, LocalGLMnet, and the pure feature tokenizer transformer. The paper shows that the new methods can achieve better results than the benchmark models while preserving the structure of the underlying actuarial models, thereby inheriting and retaining their advantages. The paper also discusses the practical implications and challenges of applying transformer models in actuarial settings.
期刊介绍:
Actuarial science and actuarial finance deal with the study, modeling and managing of insurance and related financial risks for which stochastic models and statistical methods are available. Topics include classical actuarial mathematics such as life and non-life insurance, pension funds, reinsurance, and also more recent areas of interest such as risk management, asset-and-liability management, solvency, catastrophe modeling, systematic changes in risk parameters, longevity, etc. EAJ is designed for the promotion and development of actuarial science and actuarial finance. For this, we publish original actuarial research papers, either theoretical or applied, with innovative applications, as well as case studies on the evaluation and implementation of new mathematical methods in insurance and actuarial finance. We also welcome survey papers on topics of recent interest in the field. EAJ is the successor of six national actuarial journals, and particularly focuses on links between actuarial theory and practice. In order to serve as a platform for this exchange, we also welcome discussions (typically from practitioners, with a length of 1-3 pages) on published papers that highlight the application aspects of the discussed paper. Such discussions can also suggest modifications of the studied problem which are of particular interest to actuarial practice. Thus, they can serve as motivation for further studies.Finally, EAJ now also publishes ‘Letters’, which are short papers (up to 5 pages) that have academic and/or practical relevance and consist of e.g. an interesting idea, insight, clarification or observation of a cross-connection that deserves publication, but is shorter than a usual research article. A detailed description or proposition of a new relevant research question, short but curious mathematical results that deserve the attention of the actuarial community as well as novel applications of mathematical and actuarial concepts are equally welcome. Letter submissions will be reviewed within 6 weeks, so that they provide an opportunity to get good and pertinent ideas published quickly, while the same refereeing standards as for other submissions apply. Both academics and practitioners are encouraged to contribute to this new format. Authors are invited to submit their papers online via http://euaj.edmgr.com.