{"title":"一类非微不足道的非 D 空间简单示例","authors":"Yu-Lin Chou","doi":"10.1515/gmj-2024-2033","DOIUrl":null,"url":null,"abstract":"Given any regular <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2033_eq_0029.png\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (equivalently, regular <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2033_eq_0030.png\"/> <jats:tex-math>{T_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space <jats:italic>X</jats:italic>, the question of whether <jats:italic>X</jats:italic> being Lindelöf implies <jats:italic>X</jats:italic> being a <jats:italic>D</jats:italic>-space is an active open problem. This article gives a class of handy examples of a second countable collectionwise normal collectionwise Hausdorff <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2033_eq_0029.png\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> space of uncountable cardinal, with at most countably many singletons being not closed, that is not a <jats:italic>D</jats:italic>-space. Also given is a class of handy examples of a second countable hyperconnected <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2033_eq_0029.png\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> space of uncountable cardinal, with at most countably many singletons being not closed, that is not a <jats:italic>D</jats:italic>-space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of nontrivial simple examples of a non-D-space\",\"authors\":\"Yu-Lin Chou\",\"doi\":\"10.1515/gmj-2024-2033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any regular <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2033_eq_0029.png\\\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (equivalently, regular <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>T</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2033_eq_0030.png\\\"/> <jats:tex-math>{T_{1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>) space <jats:italic>X</jats:italic>, the question of whether <jats:italic>X</jats:italic> being Lindelöf implies <jats:italic>X</jats:italic> being a <jats:italic>D</jats:italic>-space is an active open problem. This article gives a class of handy examples of a second countable collectionwise normal collectionwise Hausdorff <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2033_eq_0029.png\\\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> space of uncountable cardinal, with at most countably many singletons being not closed, that is not a <jats:italic>D</jats:italic>-space. Also given is a class of handy examples of a second countable hyperconnected <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>T</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2033_eq_0029.png\\\"/> <jats:tex-math>{T_{0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> space of uncountable cardinal, with at most countably many singletons being not closed, that is not a <jats:italic>D</jats:italic>-space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给定任何正则 T 0 {T_{0}} (等价于正则 T 1 {T_{1}} )空间 X (等价地,正则 T 1 {T_{1}} )空间 X,X 是林德洛夫是否意味着 X 是 D 空间是一个活跃的开放问题。本文给出了一类非 D 空间的第二可数集合正则集合 Hausdorff T 0 {T_{0}}空间的方便例子,该空间具有最多可数的单子不封闭。此外,还给出了一类非 D 空间的第二可数超连接 T 0 {T_{0}} 空间的方便示例,该空间具有最多可数个不封闭的单子。
A class of nontrivial simple examples of a non-D-space
Given any regular T0{T_{0}} (equivalently, regular T1{T_{1}}) space X, the question of whether X being Lindelöf implies X being a D-space is an active open problem. This article gives a class of handy examples of a second countable collectionwise normal collectionwise Hausdorff T0{T_{0}} space of uncountable cardinal, with at most countably many singletons being not closed, that is not a D-space. Also given is a class of handy examples of a second countable hyperconnected T0{T_{0}} space of uncountable cardinal, with at most countably many singletons being not closed, that is not a D-space.