高等派生对半元环的作用

IF 0.8 4区 数学 Q2 MATHEMATICS
Shakir Ali, Vaishali Varshney
{"title":"高等派生对半元环的作用","authors":"Shakir Ali, Vaishali Varshney","doi":"10.1515/gmj-2024-2026","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0341.png\"/> <jats:tex-math>{m,n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the fixed positive integers and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a ring. In 1978, Herstein proved that a 2-torsion free prime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative if there is a nonzero derivation <jats:italic>d</jats:italic> of <jats:italic>R</jats:italic> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0157.png\"/> <jats:tex-math>{[d(\\varrho),d(\\xi)]=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0243.png\"/> <jats:tex-math>{\\varrho,\\xi\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0108.png\"/> <jats:tex-math>{(d_{i})_{i\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0112.png\"/> <jats:tex-math>{(g_{j})_{j\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be two higher derivations of semiprime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>g</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0165.png\"/> <jats:tex-math>{[d_{n}(\\varrho),g_{m}(\\xi)]\\in Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi mathvariant=\"script\">ℐ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0244.png\"/> <jats:tex-math>{\\varrho,\\xi\\in\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℐ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0218.png\"/> <jats:tex-math>{\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an ideal of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0224.png\"/> <jats:tex-math>{\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0108.png\"/> <jats:tex-math>{(d_{i})_{i\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0139.png\"/> <jats:tex-math>{Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0112.png\"/> <jats:tex-math>{(g_{j})_{j\\in\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">ℛ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2026_eq_0139.png\"/> <jats:tex-math>{Z(\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Action of higher derivations on semiprime rings\",\"authors\":\"Shakir Ali, Vaishali Varshney\",\"doi\":\"10.1515/gmj-2024-2026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0341.png\\\"/> <jats:tex-math>{m,n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the fixed positive integers and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0224.png\\\"/> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a ring. In 1978, Herstein proved that a 2-torsion free prime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0224.png\\\"/> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative if there is a nonzero derivation <jats:italic>d</jats:italic> of <jats:italic>R</jats:italic> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mi>d</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0157.png\\\"/> <jats:tex-math>{[d(\\\\varrho),d(\\\\xi)]=0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi>R</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0243.png\\\"/> <jats:tex-math>{\\\\varrho,\\\\xi\\\\in R}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0108.png\\\"/> <jats:tex-math>{(d_{i})_{i\\\\in\\\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0112.png\\\"/> <jats:tex-math>{(g_{j})_{j\\\\in\\\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be two higher derivations of semiprime ring <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0224.png\\\"/> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mrow> <m:msub> <m:mi>d</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϱ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:msub> <m:mi>g</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ξ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0165.png\\\"/> <jats:tex-math>{[d_{n}(\\\\varrho),g_{m}(\\\\xi)]\\\\in Z(\\\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi mathvariant=\\\"script\\\">ℐ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0244.png\\\"/> <jats:tex-math>{\\\\varrho,\\\\xi\\\\in\\\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℐ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0218.png\\\"/> <jats:tex-math>{\\\\mathcal{I}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an ideal of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0224.png\\\"/> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then either <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0224.png\\\"/> <jats:tex-math>{\\\\mathcal{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is commutative or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>d</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0108.png\\\"/> <jats:tex-math>{(d_{i})_{i\\\\in\\\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0139.png\\\"/> <jats:tex-math>{Z(\\\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero or some linear combination of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>g</m:mi> <m:mi>j</m:mi> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>∈</m:mo> <m:mi>ℕ</m:mi> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0112.png\\\"/> <jats:tex-math>{(g_{j})_{j\\\\in\\\\mathbb{N}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> sends <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Z</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">ℛ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_gmj-2024-2026_eq_0139.png\\\"/> <jats:tex-math>{Z(\\\\mathcal{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 m , n {m,n} 是固定的正整数,设 ℛ {\mathcal{R}} 是一个环。1978 年,赫斯坦证明,如果 R 有一个非零派生 d,使得 [ d ( ϱ ) , d ( ξ ) ] = 0 {[d(\varrho),d(\xi)]=0} 对于所有 ϱ , ξ∈ R {\varrho,\xi\in R} 而言,那么 2 个无扭素数环ℛ {mathcal{R}} 是交换环。 .在本文中,我们将研究上述关于高阶引申的经典结果,并利用素理想在高阶引申下的不变性来描述半素环的结构。确切地说,除了证明其他一些重要结果之外,我们还证明了以下内容。设 ( d i ) i∈ ℕ {(d_{i})_{iin\mathbb{N}}} 和 ( g j ) j∈ ℕ {(g_{j})_{jin\mathbb{N}}} 是半椭圆环 ℛ {\mathcal{R}} 的两个高阶衍,使得 [ d n ( ϱ ) 、 g m ( ξ ) ] ∈ Z ( ℛ ) {[d_{n}(\varrho),g_{m}(\xi)]\in Z(\mathcal{R})} for all ϱ , ξ ∈ ℐ {\varrho,\xi\in\mathcal{I}} 其中ℐ {\mathcal{I}} 是ℛ {\mathcal{R}} 的理想。 .那么,要么ℛ {\mathcal{R}} 是交换式的,要么 ( d i ) i∈ ℕ {(d_{i})_{iin\mathbb{N}}} 的某个线性组合将 Z ( ℛ ) {Z(\mathcal{R})} 为零,或者 ( g j ) j∈ ℕ {(g_{j})_{jin\mathbb{N}} 的某个线性组合使 Z ( ℛ ) {Z(\mathcal{R})} 为零。我们用实例来丰富我们的结果,证明其假设的必要性。最后,我们以进一步研究的方向结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action of higher derivations on semiprime rings
Let m , n {m,n} be the fixed positive integers and let {\mathcal{R}} be a ring. In 1978, Herstein proved that a 2-torsion free prime ring {\mathcal{R}} is commutative if there is a nonzero derivation d of R such that [ d ( ϱ ) , d ( ξ ) ] = 0 {[d(\varrho),d(\xi)]=0} for all ϱ , ξ R {\varrho,\xi\in R} . In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let ( d i ) i {(d_{i})_{i\in\mathbb{N}}} and ( g j ) j {(g_{j})_{j\in\mathbb{N}}} be two higher derivations of semiprime ring {\mathcal{R}} such that [ d n ( ϱ ) , g m ( ξ ) ] Z ( ) {[d_{n}(\varrho),g_{m}(\xi)]\in Z(\mathcal{R})} for all ϱ , ξ {\varrho,\xi\in\mathcal{I}} , where {\mathcal{I}} is an ideal of {\mathcal{R}} . Then either {\mathcal{R}} is commutative or some linear combination of ( d i ) i {(d_{i})_{i\in\mathbb{N}}} sends Z ( ) {Z(\mathcal{R})} to zero or some linear combination of ( g j ) j {(g_{j})_{j\in\mathbb{N}}} sends Z ( ) {Z(\mathcal{R})} to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信