隐式[数学]级块 Runge-Kutta 预处理器的谱分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Martin J. Gander, Michal Outrata
{"title":"隐式[数学]级块 Runge-Kutta 预处理器的谱分析","authors":"Martin J. Gander, Michal Outrata","doi":"10.1137/23m1604266","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2047-A2072, June 2024. <br/> Abstract. We analyze the recently introduced family of preconditioners in [M. M. Rana et al., SIAM J. Sci. Comput., 43 (2021), pp. S475–S495] for the stage equations of implicit Runge–Kutta methods for [math]-stage methods. We simplify the formulas for the eigenvalues and eigenvectors of the preconditioned systems for a general [math]-stage method and use these to obtain convergence rate estimates for preconditioned GMRES for some common choices of the implicit Runge–Kutta methods. This analysis is based on understanding the inherent matrix structure of these problems and exploiting it to qualitatively predict and explain the main observed features of the GMRES convergence behavior, using tools from approximation and potential theory based on Schwarz–Christoffel maps for curves and close, connected domains in the complex plane. We illustrate our analysis with numerical experiments showing very close correspondence of the estimates and the observed behavior, suggesting the analysis reliably captures the essence of these preconditioners.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Analysis of Implicit [math]-Stage Block Runge–Kutta Preconditioners\",\"authors\":\"Martin J. Gander, Michal Outrata\",\"doi\":\"10.1137/23m1604266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2047-A2072, June 2024. <br/> Abstract. We analyze the recently introduced family of preconditioners in [M. M. Rana et al., SIAM J. Sci. Comput., 43 (2021), pp. S475–S495] for the stage equations of implicit Runge–Kutta methods for [math]-stage methods. We simplify the formulas for the eigenvalues and eigenvectors of the preconditioned systems for a general [math]-stage method and use these to obtain convergence rate estimates for preconditioned GMRES for some common choices of the implicit Runge–Kutta methods. This analysis is based on understanding the inherent matrix structure of these problems and exploiting it to qualitatively predict and explain the main observed features of the GMRES convergence behavior, using tools from approximation and potential theory based on Schwarz–Christoffel maps for curves and close, connected domains in the complex plane. We illustrate our analysis with numerical experiments showing very close correspondence of the estimates and the observed behavior, suggesting the analysis reliably captures the essence of these preconditioners.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1604266\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1604266","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 A2047-A2072 页,2024 年 6 月。 摘要。我们分析了 [M. M. Rana 等人,SIAM J. Sci. Comput.,43 (2021),第 S475-S495 页] 中针对 [math] 阶段方法的隐式 Runge-Kutta 方法的阶段方程最近引入的预处理器系列。我们简化了一般[数学]阶段方法的预处理系统特征值和特征向量的公式,并利用这些公式得到了一些常见隐式 Runge-Kutta 方法的预处理 GMRES 的收敛率估计值。这一分析基于对这些问题固有矩阵结构的理解,并利用它来定性预测和解释所观察到的 GMRES 收敛行为的主要特征,使用的工具来自近似和势理论,其基础是复平面中曲线和紧密连接域的 Schwarz-Christoffel 映射。我们用数值实验来说明我们的分析,结果表明估计值与观察到的行为非常接近,这表明我们的分析可靠地捕捉到了这些预处理器的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Analysis of Implicit [math]-Stage Block Runge–Kutta Preconditioners
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2047-A2072, June 2024.
Abstract. We analyze the recently introduced family of preconditioners in [M. M. Rana et al., SIAM J. Sci. Comput., 43 (2021), pp. S475–S495] for the stage equations of implicit Runge–Kutta methods for [math]-stage methods. We simplify the formulas for the eigenvalues and eigenvectors of the preconditioned systems for a general [math]-stage method and use these to obtain convergence rate estimates for preconditioned GMRES for some common choices of the implicit Runge–Kutta methods. This analysis is based on understanding the inherent matrix structure of these problems and exploiting it to qualitatively predict and explain the main observed features of the GMRES convergence behavior, using tools from approximation and potential theory based on Schwarz–Christoffel maps for curves and close, connected domains in the complex plane. We illustrate our analysis with numerical experiments showing very close correspondence of the estimates and the observed behavior, suggesting the analysis reliably captures the essence of these preconditioners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信