Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye
{"title":"应用于传感器网络定位的黎曼降维二阶方法","authors":"Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye","doi":"10.1137/23m1567229","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. <br/> Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization\",\"authors\":\"Tianyun Tang, Kim-Chuan Toh, Nachuan Xiao, Yinyu Ye\",\"doi\":\"10.1137/23m1567229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. <br/> Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1567229\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1567229","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Riemannian Dimension-Reduced Second-Order Method with Application in Sensor Network Localization
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A2025-A2046, June 2024. Abstract. In this paper, we propose a cubic-regularized Riemannian optimization method (RDRSOM), which partially exploits the second-order information and achieves the iteration complexity of [math]. In order to reduce the per-iteration computational cost, we further propose a practical version of RDRSOM which is an extension of the well-known Barzilai–Borwein method, which enjoys the worst-case iteration complexity of [math]. Moreover, under more stringent conditions, RDRSOM achieves the iteration complexity of [math]. We apply our method to solve a nonlinear formulation of the wireless sensor network localization problem whose feasible set is a Riemannian manifold that has not been considered in the literature before. Numerical experiments are conducted to verify the high efficiency of our algorithm compared to state-of-the-art Riemannian optimization methods and other nonlinear solvers.