主动搜索分岔

Yorgos M. Psarellis, Themistoklis P. Sapsis, Ioannis G. Kevrekidis
{"title":"主动搜索分岔","authors":"Yorgos M. Psarellis, Themistoklis P. Sapsis, Ioannis G. Kevrekidis","doi":"arxiv-2406.11141","DOIUrl":null,"url":null,"abstract":"Bifurcations mark qualitative changes of long-term behavior in dynamical\nsystems and can often signal sudden (\"hard\") transitions or catastrophic events\n(divergences). Accurately locating them is critical not just for deeper\nunderstanding of observed dynamic behavior, but also for designing efficient\ninterventions. When the dynamical system at hand is complex, possibly noisy,\nand expensive to sample, standard (e.g. continuation based) numerical methods\nmay become impractical. We propose an active learning framework, where Bayesian\nOptimization is leveraged to discover saddle-node or Hopf bifurcations, from a\njudiciously chosen small number of vector field observations. Such an approach\nbecomes especially attractive in systems whose state x parameter space\nexploration is resource-limited. It also naturally provides a framework for\nuncertainty quantification (aleatoric and epistemic), useful in systems with\ninherent stochasticity.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active search for Bifurcations\",\"authors\":\"Yorgos M. Psarellis, Themistoklis P. Sapsis, Ioannis G. Kevrekidis\",\"doi\":\"arxiv-2406.11141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bifurcations mark qualitative changes of long-term behavior in dynamical\\nsystems and can often signal sudden (\\\"hard\\\") transitions or catastrophic events\\n(divergences). Accurately locating them is critical not just for deeper\\nunderstanding of observed dynamic behavior, but also for designing efficient\\ninterventions. When the dynamical system at hand is complex, possibly noisy,\\nand expensive to sample, standard (e.g. continuation based) numerical methods\\nmay become impractical. We propose an active learning framework, where Bayesian\\nOptimization is leveraged to discover saddle-node or Hopf bifurcations, from a\\njudiciously chosen small number of vector field observations. Such an approach\\nbecomes especially attractive in systems whose state x parameter space\\nexploration is resource-limited. It also naturally provides a framework for\\nuncertainty quantification (aleatoric and epistemic), useful in systems with\\ninherent stochasticity.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分岔标志着动态系统中长期行为的质变,通常预示着突然("艰难")的转变或灾难性事件(分歧)。准确定位分岔不仅对深入理解观察到的动态行为至关重要,而且对设计有效的干预措施也至关重要。当手头的动态系统非常复杂、可能存在噪声、采样成本高昂时,标准(如基于延续的)数值方法可能会变得不切实际。我们提出了一种主动学习框架,利用贝叶斯最优化技术,从明智选择的少量矢量场观测中发现鞍节点或霍普夫分岔。这种方法在资源有限的状态 x 参数空间探索系统中尤其具有吸引力。它还自然而然地提供了一个不确定性量化框架(估计和认识),对固有随机性系统非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active search for Bifurcations
Bifurcations mark qualitative changes of long-term behavior in dynamical systems and can often signal sudden ("hard") transitions or catastrophic events (divergences). Accurately locating them is critical not just for deeper understanding of observed dynamic behavior, but also for designing efficient interventions. When the dynamical system at hand is complex, possibly noisy, and expensive to sample, standard (e.g. continuation based) numerical methods may become impractical. We propose an active learning framework, where Bayesian Optimization is leveraged to discover saddle-node or Hopf bifurcations, from a judiciously chosen small number of vector field observations. Such an approach becomes especially attractive in systems whose state x parameter space exploration is resource-limited. It also naturally provides a framework for uncertainty quantification (aleatoric and epistemic), useful in systems with inherent stochasticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信