小数阶 Lyapunov 指数 Matlab 代码的内存原理

Marius-F. Danca, Michal feckan
{"title":"小数阶 Lyapunov 指数 Matlab 代码的内存原理","authors":"Marius-F. Danca, Michal feckan","doi":"arxiv-2406.04686","DOIUrl":null,"url":null,"abstract":"The paper presents two representative classes of Impulsive Fractional\nDifferential Equations defined with generalized Caputo\\'s derivative, with\nfixed lower limit and changing lower limit, respectively. Memory principle is\nstudied and numerical examples are considered. The problem of the memory\nprinciple of the Matlab code for Lyapunov exponents of fractional order systems\n[Danca & Kuznetsov, 2018] is analyzed.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory principle of the Matlab code for Lyapunov Exponents of fractional order\",\"authors\":\"Marius-F. Danca, Michal feckan\",\"doi\":\"arxiv-2406.04686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents two representative classes of Impulsive Fractional\\nDifferential Equations defined with generalized Caputo\\\\'s derivative, with\\nfixed lower limit and changing lower limit, respectively. Memory principle is\\nstudied and numerical examples are considered. The problem of the memory\\nprinciple of the Matlab code for Lyapunov exponents of fractional order systems\\n[Danca & Kuznetsov, 2018] is analyzed.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.04686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用广义卡普托导数定义的两类具有代表性的脉冲分微分方程,它们分别具有固定下限和变化下限。研究了记忆原理,并考虑了数值示例。分析了分数阶系统 Lyapunov 指数 Matlab 代码的记忆原理问题[Danca & Kuznetsov, 2018]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory principle of the Matlab code for Lyapunov Exponents of fractional order
The paper presents two representative classes of Impulsive Fractional Differential Equations defined with generalized Caputo\'s derivative, with fixed lower limit and changing lower limit, respectively. Memory principle is studied and numerical examples are considered. The problem of the memory principle of the Matlab code for Lyapunov exponents of fractional order systems [Danca & Kuznetsov, 2018] is analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信