振荡动力学:振荡系统分析框架

Marco Thiel
{"title":"振荡动力学:振荡系统分析框架","authors":"Marco Thiel","doi":"arxiv-2407.00235","DOIUrl":null,"url":null,"abstract":"Intractable phase dynamics often challenge our understanding of complex\noscillatory systems, hindering the exploration of synchronisation, chaos, and\nemergent phenomena across diverse fields. We introduce a novel conceptual\nframework for phase analysis, using the osculating circle to construct a\nco-moving coordinate system, which allows us to define a unique phase of the\nsystem. This coordinate independent, geometrical technique allows dissecting\nintricate local phase dynamics, even in regimes where traditional methods fail.\nOur methodology enables the analysis of a wider range of complex systems which\nwere previously deemed intractable.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osculatory Dynamics: Framework for the Analysis of Oscillatory Systems\",\"authors\":\"Marco Thiel\",\"doi\":\"arxiv-2407.00235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intractable phase dynamics often challenge our understanding of complex\\noscillatory systems, hindering the exploration of synchronisation, chaos, and\\nemergent phenomena across diverse fields. We introduce a novel conceptual\\nframework for phase analysis, using the osculating circle to construct a\\nco-moving coordinate system, which allows us to define a unique phase of the\\nsystem. This coordinate independent, geometrical technique allows dissecting\\nintricate local phase dynamics, even in regimes where traditional methods fail.\\nOur methodology enables the analysis of a wider range of complex systems which\\nwere previously deemed intractable.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

难以理解的相位动力学经常挑战我们对复杂振荡系统的理解,阻碍了我们对同步、混沌和各领域突发现象的探索。我们为相位分析引入了一个新颖的概念框架,利用摆动圆来构建一个非移动坐标系,从而定义系统的独特相位。这种独立于坐标的几何技术可以剖析错综复杂的局部相位动力学,甚至在传统方法失效的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Osculatory Dynamics: Framework for the Analysis of Oscillatory Systems
Intractable phase dynamics often challenge our understanding of complex oscillatory systems, hindering the exploration of synchronisation, chaos, and emergent phenomena across diverse fields. We introduce a novel conceptual framework for phase analysis, using the osculating circle to construct a co-moving coordinate system, which allows us to define a unique phase of the system. This coordinate independent, geometrical technique allows dissecting intricate local phase dynamics, even in regimes where traditional methods fail. Our methodology enables the analysis of a wider range of complex systems which were previously deemed intractable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信