用于量化封闭室中氧气分馏系数的多重系统

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Clémence Paul, Clément Piel, Joana Sauze, Olivier Jossoud, Arnaud Dapoigny, Daniele Romanini, Frédérique Prié, Sébastien Devidal, Roxanne Jacob, Alexandru Milcu, Amaëlle Landais
{"title":"用于量化封闭室中氧气分馏系数的多重系统","authors":"Clémence Paul, Clément Piel, Joana Sauze, Olivier Jossoud, Arnaud Dapoigny, Daniele Romanini, Frédérique Prié, Sébastien Devidal, Roxanne Jacob, Alexandru Milcu, Amaëlle Landais","doi":"10.5194/egusphere-2024-1755","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The study of isotopic ratios of atmospheric oxygen in fossilized air trapped in ice core bubbles provides information on variations in the hydrological cycle at low latitudes and productivity in the past. However, to refine these interpretations, it is necessary to better quantify fractionation of oxygen in the biological processes such as photosynthesis and respiration. We set up a system of closed biological chambers in which we studied the evolution of elemental and isotopic composition of O<sub>2</sub> due to biological processes. To easily replicate experiments, we developed a multiplexing system which we describe here. We compared measurements of elemental and isotopic composition of O<sub>2</sub> using two different measurement techniques: optical spectrometry (Optical-Feedback Cavity- Enhanced Absorption Spectroscopy, i.e. OF-CEAS technique), which enables higher temporal resolution and continuous data collection and isotopic ratio mass spectrometry (IRMS) with a flanged air recovery system, thus validating the data analysis conducted through the OF-CEAS technique. As a first application, we investigated isotopic discrimination during respiration and photosynthesis. We conducted a 5-day experiment using maize (<em>Zea mays</em> L.) as model species. The <sup>18</sup>O discrimination value for maize during dark plant respiration was determined as - 17.8 ± 0.9 ‰ by IRMS and - 16.1 ± 1.1 ‰ by optical spectrometer. We also found a value attributed to the isotopic discrimination of terrestrial photosynthesis equal to + 3.2 ± 2.6 ‰ by IRMS and + 6.7 ± 3.8 ‰ by optical spectrometer. These findings were consistent with a previous study by Paul et al. (2023).","PeriodicalId":48742,"journal":{"name":"Geoscientific Instrumentation Methods and Data Systems","volume":"158 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiplexing system for quantifying oxygen fractionation factors in closed chambers\",\"authors\":\"Clémence Paul, Clément Piel, Joana Sauze, Olivier Jossoud, Arnaud Dapoigny, Daniele Romanini, Frédérique Prié, Sébastien Devidal, Roxanne Jacob, Alexandru Milcu, Amaëlle Landais\",\"doi\":\"10.5194/egusphere-2024-1755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The study of isotopic ratios of atmospheric oxygen in fossilized air trapped in ice core bubbles provides information on variations in the hydrological cycle at low latitudes and productivity in the past. However, to refine these interpretations, it is necessary to better quantify fractionation of oxygen in the biological processes such as photosynthesis and respiration. We set up a system of closed biological chambers in which we studied the evolution of elemental and isotopic composition of O<sub>2</sub> due to biological processes. To easily replicate experiments, we developed a multiplexing system which we describe here. We compared measurements of elemental and isotopic composition of O<sub>2</sub> using two different measurement techniques: optical spectrometry (Optical-Feedback Cavity- Enhanced Absorption Spectroscopy, i.e. OF-CEAS technique), which enables higher temporal resolution and continuous data collection and isotopic ratio mass spectrometry (IRMS) with a flanged air recovery system, thus validating the data analysis conducted through the OF-CEAS technique. As a first application, we investigated isotopic discrimination during respiration and photosynthesis. We conducted a 5-day experiment using maize (<em>Zea mays</em> L.) as model species. The <sup>18</sup>O discrimination value for maize during dark plant respiration was determined as - 17.8 ± 0.9 ‰ by IRMS and - 16.1 ± 1.1 ‰ by optical spectrometer. We also found a value attributed to the isotopic discrimination of terrestrial photosynthesis equal to + 3.2 ± 2.6 ‰ by IRMS and + 6.7 ± 3.8 ‰ by optical spectrometer. These findings were consistent with a previous study by Paul et al. (2023).\",\"PeriodicalId\":48742,\"journal\":{\"name\":\"Geoscientific Instrumentation Methods and Data Systems\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Instrumentation Methods and Data Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1755\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Instrumentation Methods and Data Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1755","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要通过研究冰芯气泡中化石空气所含大气氧的同位素比值,可以了解过去低纬度地区水文循环和生产力的变化情况。然而,为了完善这些解释,有必要更好地量化光合作用和呼吸作用等生物过程中氧的分馏。我们建立了一个封闭的生物室系统,在其中研究生物过程导致的氧气元素和同位素组成的演变。为了便于重复实验,我们开发了一种多路复用系统,并在此加以说明。我们比较了使用两种不同测量技术对 O2 的元素和同位素组成进行的测量:光学光谱法(光回馈腔增强吸收光谱法,即 OF-CEAS 技术)和同位素比质谱法(IRMS),前者可实现更高的时间分辨率和连续数据收集,后者带有法兰式空气回收系统,从而验证了通过 OF-CEAS 技术进行的数据分析。作为首次应用,我们研究了呼吸和光合作用过程中的同位素鉴别。我们以玉米(Zea mays L.)为模型物种进行了为期 5 天的实验。通过红外光谱仪测定,玉米在黑暗植物呼吸过程中的 18O 鉴别值为 - 17.8 ± 0.9 ‰,通过光学光谱仪测定为 - 16.1 ± 1.1 ‰。我们还发现陆地光合作用的同位素分辨值为:红外光谱仪为 + 3.2 ± 2.6 ‰,光学光谱仪为 + 6.7 ± 3.8 ‰。这些发现与 Paul 等人(2023 年)以前的研究结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiplexing system for quantifying oxygen fractionation factors in closed chambers
Abstract. The study of isotopic ratios of atmospheric oxygen in fossilized air trapped in ice core bubbles provides information on variations in the hydrological cycle at low latitudes and productivity in the past. However, to refine these interpretations, it is necessary to better quantify fractionation of oxygen in the biological processes such as photosynthesis and respiration. We set up a system of closed biological chambers in which we studied the evolution of elemental and isotopic composition of O2 due to biological processes. To easily replicate experiments, we developed a multiplexing system which we describe here. We compared measurements of elemental and isotopic composition of O2 using two different measurement techniques: optical spectrometry (Optical-Feedback Cavity- Enhanced Absorption Spectroscopy, i.e. OF-CEAS technique), which enables higher temporal resolution and continuous data collection and isotopic ratio mass spectrometry (IRMS) with a flanged air recovery system, thus validating the data analysis conducted through the OF-CEAS technique. As a first application, we investigated isotopic discrimination during respiration and photosynthesis. We conducted a 5-day experiment using maize (Zea mays L.) as model species. The 18O discrimination value for maize during dark plant respiration was determined as - 17.8 ± 0.9 ‰ by IRMS and - 16.1 ± 1.1 ‰ by optical spectrometer. We also found a value attributed to the isotopic discrimination of terrestrial photosynthesis equal to + 3.2 ± 2.6 ‰ by IRMS and + 6.7 ± 3.8 ‰ by optical spectrometer. These findings were consistent with a previous study by Paul et al. (2023).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Instrumentation Methods and Data Systems
Geoscientific Instrumentation Methods and Data Systems GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
3.70
自引率
0.00%
发文量
23
审稿时长
37 weeks
期刊介绍: Geoscientific Instrumentation, Methods and Data Systems (GI) is an open-access interdisciplinary electronic journal for swift publication of original articles and short communications in the area of geoscientific instruments. It covers three main areas: (i) atmospheric and geospace sciences, (ii) earth science, and (iii) ocean science. A unique feature of the journal is the emphasis on synergy between science and technology that facilitates advances in GI. These advances include but are not limited to the following: concepts, design, and description of instrumentation and data systems; retrieval techniques of scientific products from measurements; calibration and data quality assessment; uncertainty in measurements; newly developed and planned research platforms and community instrumentation capabilities; major national and international field campaigns and observational research programs; new observational strategies to address societal needs in areas such as monitoring climate change and preventing natural disasters; networking of instruments for enhancing high temporal and spatial resolution of observations. GI has an innovative two-stage publication process involving the scientific discussion forum Geoscientific Instrumentation, Methods and Data Systems Discussions (GID), which has been designed to do the following: foster scientific discussion; maximize the effectiveness and transparency of scientific quality assurance; enable rapid publication; make scientific publications freely accessible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信