关于幂和的一些全等和广义调和数的沃斯滕霍姆定理

Morteza Bayat
{"title":"关于幂和的一些全等和广义调和数的沃斯滕霍姆定理","authors":"Morteza Bayat","doi":"10.1007/s13226-024-00622-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we first attempt to study sums of powers and to obtain some divisibility properties of the Stirling numbers of the first kind based on Newton-Girard’s identity. Then, using the obtained results, we study the divisibility properties of Wolstenholme’s theorem for the generalized harmonic numbers. Finally, we answer some open questions raised in 1992 by Y.Matiyasevich.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some congruences of sums of powers and Wolstenholme’s theorem for generalized harmonic numbers\",\"authors\":\"Morteza Bayat\",\"doi\":\"10.1007/s13226-024-00622-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we first attempt to study sums of powers and to obtain some divisibility properties of the Stirling numbers of the first kind based on Newton-Girard’s identity. Then, using the obtained results, we study the divisibility properties of Wolstenholme’s theorem for the generalized harmonic numbers. Finally, we answer some open questions raised in 1992 by Y.Matiyasevich.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00622-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00622-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先尝试研究幂的和,并根据牛顿-吉拉德特性获得斯特林数第一类的一些可除性状。然后,利用所获得的结果,我们研究了广义谐波数的沃斯滕霍姆定理的可分性。最后,我们回答了马蒂亚舍维奇(Y.Matiyasevich)在 1992 年提出的一些未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some congruences of sums of powers and Wolstenholme’s theorem for generalized harmonic numbers

In this paper, we first attempt to study sums of powers and to obtain some divisibility properties of the Stirling numbers of the first kind based on Newton-Girard’s identity. Then, using the obtained results, we study the divisibility properties of Wolstenholme’s theorem for the generalized harmonic numbers. Finally, we answer some open questions raised in 1992 by Y.Matiyasevich.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信