带积分边界条件的分数函数微分方程的 Vallée-Poussin 定理

Alexander Domoshnitsky, Seshadev Padhi, Satyam Narayan Srivastava
{"title":"带积分边界条件的分数函数微分方程的 Vallée-Poussin 定理","authors":"Alexander Domoshnitsky, Seshadev Padhi, Satyam Narayan Srivastava","doi":"10.1007/s13226-024-00621-4","DOIUrl":null,"url":null,"abstract":"<p>This research paper focuses on the study of a Riemann-Liouville fractional functional differential equation and a linear continuous operator acting from the space of continuous functions to the space of essentially bounded functions with a boundary condition involving integral terms. We investigates the solvability and uniqueness of the equation under certain conditions on the coefficients. The paper utilizes techniques of Vallée-Poussin theorem, and Green’s function sign constancy to establish the main results. Choosing a corresponding function within the context of the Vallée-Poussin theorem results in explicit criteria presented as algebraic inequalities. These inequalities, as we illustrate through examples, cannot be further improved.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vallée-Poussin theorem for fractional functional differential equations with integral boundary condition\",\"authors\":\"Alexander Domoshnitsky, Seshadev Padhi, Satyam Narayan Srivastava\",\"doi\":\"10.1007/s13226-024-00621-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research paper focuses on the study of a Riemann-Liouville fractional functional differential equation and a linear continuous operator acting from the space of continuous functions to the space of essentially bounded functions with a boundary condition involving integral terms. We investigates the solvability and uniqueness of the equation under certain conditions on the coefficients. The paper utilizes techniques of Vallée-Poussin theorem, and Green’s function sign constancy to establish the main results. Choosing a corresponding function within the context of the Vallée-Poussin theorem results in explicit criteria presented as algebraic inequalities. These inequalities, as we illustrate through examples, cannot be further improved.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00621-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00621-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文主要研究黎曼-刘维尔分数函数微分方程和一个从连续函数空间作用到本质上有界函数空间的线性连续算子,其边界条件涉及积分项。我们研究了方程在某些系数条件下的可解性和唯一性。论文利用 Vallée-Poussin 定理和格林函数符号恒定的技术来建立主要结果。在 Vallée-Poussin 定理的背景下选择一个相应的函数,可以得到以代数不等式形式呈现的明确标准。我们通过实例说明,这些不等式无法进一步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vallée-Poussin theorem for fractional functional differential equations with integral boundary condition

Vallée-Poussin theorem for fractional functional differential equations with integral boundary condition

This research paper focuses on the study of a Riemann-Liouville fractional functional differential equation and a linear continuous operator acting from the space of continuous functions to the space of essentially bounded functions with a boundary condition involving integral terms. We investigates the solvability and uniqueness of the equation under certain conditions on the coefficients. The paper utilizes techniques of Vallée-Poussin theorem, and Green’s function sign constancy to establish the main results. Choosing a corresponding function within the context of the Vallée-Poussin theorem results in explicit criteria presented as algebraic inequalities. These inequalities, as we illustrate through examples, cannot be further improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信