关于一般乘积 L 函数系数的比较

Guodong Hua
{"title":"关于一般乘积 L 函数系数的比较","authors":"Guodong Hua","doi":"10.1007/s13226-024-00629-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>f</i> and <i>g</i> be two distinct primitive holomorphic cusp forms of even integral weights <span>\\(k_{1}\\)</span> and <span>\\(k_{2}\\)</span> for the full modular group <span>\\(\\Gamma =SL(2,\\mathbb {Z})\\)</span>, respectively. Denote by <span>\\(\\lambda _{f\\otimes f\\otimes \\cdots \\otimes _{l} f}(n)\\)</span> and <span>\\(\\lambda _{g\\otimes g\\otimes \\cdots \\otimes _{l} g}(n)\\)</span> the <i>n</i>th normalized coefficients of the <i>l</i>-fold product product <i>L</i>-functions attached to <i>f</i> and <i>g</i>, respectively. In this paper, we establish a lower bound for the analytic density of the set </p><span>$$\\begin{aligned} \\big \\{ p ~ : ~ \\lambda _{f\\otimes f\\otimes \\cdots \\otimes _{l} f}(p) &lt; \\lambda _{g\\otimes g\\otimes \\cdots \\otimes _{l} g}(p)\\big \\}, \\end{aligned}$$</span><p>where <span>\\(l\\geqslant 4\\)</span> is any fixed integer. By analogy, we also establish some similar density results of the above supported on certain binary quadratic form.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On comparing the coefficients of general product L-functions\",\"authors\":\"Guodong Hua\",\"doi\":\"10.1007/s13226-024-00629-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>f</i> and <i>g</i> be two distinct primitive holomorphic cusp forms of even integral weights <span>\\\\(k_{1}\\\\)</span> and <span>\\\\(k_{2}\\\\)</span> for the full modular group <span>\\\\(\\\\Gamma =SL(2,\\\\mathbb {Z})\\\\)</span>, respectively. Denote by <span>\\\\(\\\\lambda _{f\\\\otimes f\\\\otimes \\\\cdots \\\\otimes _{l} f}(n)\\\\)</span> and <span>\\\\(\\\\lambda _{g\\\\otimes g\\\\otimes \\\\cdots \\\\otimes _{l} g}(n)\\\\)</span> the <i>n</i>th normalized coefficients of the <i>l</i>-fold product product <i>L</i>-functions attached to <i>f</i> and <i>g</i>, respectively. In this paper, we establish a lower bound for the analytic density of the set </p><span>$$\\\\begin{aligned} \\\\big \\\\{ p ~ : ~ \\\\lambda _{f\\\\otimes f\\\\otimes \\\\cdots \\\\otimes _{l} f}(p) &lt; \\\\lambda _{g\\\\otimes g\\\\otimes \\\\cdots \\\\otimes _{l} g}(p)\\\\big \\\\}, \\\\end{aligned}$$</span><p>where <span>\\\\(l\\\\geqslant 4\\\\)</span> is any fixed integer. By analogy, we also establish some similar density results of the above supported on certain binary quadratic form.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00629-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00629-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 f 和 g 分别是全模群\(\Gamma =SL(2,\mathbb {Z})\)的两个不同的偶积分权重为 \(k_{1}\)和 \(k_{2}\)的原始全形顶点形式。分别用 \(\lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(n)\) 和 \(\lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(n)\) 表示连接到 f 和 g 的 l 折积乘 L 函数的 n 次归一化系数。在本文中,我们建立了集合 $$\begin{aligned} 的解析密度下限。\p ~ : ~ \lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(p) < \lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(p)\big \}, \end{aligned}$$其中 \(l\geqslant 4\) 是任意固定整数。通过类比,我们还建立了上述支持某些二元二次型的类似密度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On comparing the coefficients of general product L-functions

Let f and g be two distinct primitive holomorphic cusp forms of even integral weights \(k_{1}\) and \(k_{2}\) for the full modular group \(\Gamma =SL(2,\mathbb {Z})\), respectively. Denote by \(\lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(n)\) and \(\lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(n)\) the nth normalized coefficients of the l-fold product product L-functions attached to f and g, respectively. In this paper, we establish a lower bound for the analytic density of the set

$$\begin{aligned} \big \{ p ~ : ~ \lambda _{f\otimes f\otimes \cdots \otimes _{l} f}(p) < \lambda _{g\otimes g\otimes \cdots \otimes _{l} g}(p)\big \}, \end{aligned}$$

where \(l\geqslant 4\) is any fixed integer. By analogy, we also establish some similar density results of the above supported on certain binary quadratic form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信