与多参数莱维过程有关的一些随机场族

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Francesco Iafrate, Costantino Ricciuti
{"title":"与多参数莱维过程有关的一些随机场族","authors":"Francesco Iafrate, Costantino Ricciuti","doi":"10.1007/s10959-024-01351-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathbb {R}}^N_+= [0,\\infty )^N\\)</span>. We here make new contributions concerning a class of random fields <span>\\((X_t)_{t\\in {\\mathbb {R}}^N_+}\\)</span> which are known as multiparameter Lévy processes. Related multiparameter semigroups of operators and their generators are represented as pseudo-differential operators. We also provide a Phillips formula concerning the composition of <span>\\((X_t)_{t\\in {\\mathbb {R}}^N_+}\\)</span> by means of subordinator fields. We finally define the composition of <span>\\((X_t)_{t\\in {\\mathbb {R}}^N_+}\\)</span> by means of the so-called inverse random fields, which gives rise to interesting long-range dependence properties. As a byproduct of our analysis, we present a model of anomalous diffusion in an anisotropic medium which extends the one treated in Beghin et al. (Stoch Proc Appl 130:6364–6387, 2020), by improving some of its shortcomings.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"24 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Families of Random Fields Related to Multiparameter Lévy Processes\",\"authors\":\"Francesco Iafrate, Costantino Ricciuti\",\"doi\":\"10.1007/s10959-024-01351-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathbb {R}}^N_+= [0,\\\\infty )^N\\\\)</span>. We here make new contributions concerning a class of random fields <span>\\\\((X_t)_{t\\\\in {\\\\mathbb {R}}^N_+}\\\\)</span> which are known as multiparameter Lévy processes. Related multiparameter semigroups of operators and their generators are represented as pseudo-differential operators. We also provide a Phillips formula concerning the composition of <span>\\\\((X_t)_{t\\\\in {\\\\mathbb {R}}^N_+}\\\\)</span> by means of subordinator fields. We finally define the composition of <span>\\\\((X_t)_{t\\\\in {\\\\mathbb {R}}^N_+}\\\\)</span> by means of the so-called inverse random fields, which gives rise to interesting long-range dependence properties. As a byproduct of our analysis, we present a model of anomalous diffusion in an anisotropic medium which extends the one treated in Beghin et al. (Stoch Proc Appl 130:6364–6387, 2020), by improving some of its shortcomings.\\n</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01351-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01351-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathbb {R}}^N_+= [0,\infty )^N\).在此,我们将对一类随机场 ((X_t)_{t\in {\mathbb {R}^N_+}\) 做出新的贡献,这类随机场被称为多参数莱维过程。相关的多参数算子半群及其生成器被表示为伪微分算子。我们还提供了一个关于 \((X_t)_{t\in {\mathbb {R}}^N_+}\) 通过子域组成的菲利普斯公式。最后,我们通过所谓的逆随机场定义了 \((X_t)_{t\in {\mathbb {R}}^N_+}\) 的组成,这就产生了有趣的长程依赖特性。作为分析的副产品,我们提出了各向异性介质中的反常扩散模型,该模型扩展了 Beghin 等人的研究(Stoch Proc Appl 130:6364-6387, 2020),改进了其中的一些缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some Families of Random Fields Related to Multiparameter Lévy Processes

Some Families of Random Fields Related to Multiparameter Lévy Processes

Let \({\mathbb {R}}^N_+= [0,\infty )^N\). We here make new contributions concerning a class of random fields \((X_t)_{t\in {\mathbb {R}}^N_+}\) which are known as multiparameter Lévy processes. Related multiparameter semigroups of operators and their generators are represented as pseudo-differential operators. We also provide a Phillips formula concerning the composition of \((X_t)_{t\in {\mathbb {R}}^N_+}\) by means of subordinator fields. We finally define the composition of \((X_t)_{t\in {\mathbb {R}}^N_+}\) by means of the so-called inverse random fields, which gives rise to interesting long-range dependence properties. As a byproduct of our analysis, we present a model of anomalous diffusion in an anisotropic medium which extends the one treated in Beghin et al. (Stoch Proc Appl 130:6364–6387, 2020), by improving some of its shortcomings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信