一类高斯过程的 Kac-Stroock 近似函数大偏差与小噪声扩散的应用

Pub Date : 2024-06-27 DOI:10.1007/s10959-024-01354-0
Jiang Hui, Xu Lihu, Yang Qingshan
{"title":"一类高斯过程的 Kac-Stroock 近似函数大偏差与小噪声扩散的应用","authors":"Jiang Hui, Xu Lihu, Yang Qingshan","doi":"10.1007/s10959-024-01354-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the functional large deviation principle (LDP) for the Kac–Stroock approximations of a wild class of Gaussian processes constructed by telegraph types of integrals with <span>\\(L^2\\)</span>-integrands under mild conditions and find the explicit form for their rate functions. Our investigation includes a broad range of kernels, such as those related to Brownian motions, fractional Brownian motions with whole Hurst parameters, and Ornstein–Uhlenbeck processes. Furthermore, we consider a class of non-Markovian stochastic differential equations driven by the Kac–Stroock approximation and establish their Freidlin–Wentzell type LDP. The rate function clearly indicates an interesting phase transition phenomenon as the approximating rate moves from one region to the other.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions\",\"authors\":\"Jiang Hui, Xu Lihu, Yang Qingshan\",\"doi\":\"10.1007/s10959-024-01354-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the functional large deviation principle (LDP) for the Kac–Stroock approximations of a wild class of Gaussian processes constructed by telegraph types of integrals with <span>\\\\(L^2\\\\)</span>-integrands under mild conditions and find the explicit form for their rate functions. Our investigation includes a broad range of kernels, such as those related to Brownian motions, fractional Brownian motions with whole Hurst parameters, and Ornstein–Uhlenbeck processes. Furthermore, we consider a class of non-Markovian stochastic differential equations driven by the Kac–Stroock approximation and establish their Freidlin–Wentzell type LDP. The rate function clearly indicates an interesting phase transition phenomenon as the approximating rate moves from one region to the other.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01354-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01354-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了在温和条件下由具有 \(L^2\)-integrands 的电报类型积分构造的一类高斯过程的 Kac-Stroock 近似的函数大偏差原理(LDP),并找到了它们的速率函数的显式。我们的研究包括广泛的内核,例如与布朗运动、具有全赫斯特参数的分数布朗运动和奥恩斯坦-乌伦贝克过程相关的内核。此外,我们还考虑了一类由 Kac-Stroock 近似驱动的非马尔可夫随机微分方程,并建立了它们的 Freidlin-Wentzell 型 LDP。当近似率从一个区域移动到另一个区域时,速率函数清楚地表明了一个有趣的相变现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Functional Large Deviations for Kac–Stroock Approximation to a Class of Gaussian Processes with Application to Small Noise Diffusions

In this paper, we establish the functional large deviation principle (LDP) for the Kac–Stroock approximations of a wild class of Gaussian processes constructed by telegraph types of integrals with \(L^2\)-integrands under mild conditions and find the explicit form for their rate functions. Our investigation includes a broad range of kernels, such as those related to Brownian motions, fractional Brownian motions with whole Hurst parameters, and Ornstein–Uhlenbeck processes. Furthermore, we consider a class of non-Markovian stochastic differential equations driven by the Kac–Stroock approximation and establish their Freidlin–Wentzell type LDP. The rate function clearly indicates an interesting phase transition phenomenon as the approximating rate moves from one region to the other.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信