局部紧密豪斯多夫拓扑群上规则概率量半群的规则性

Pub Date : 2024-07-02 DOI:10.1007/s10959-024-01353-1
M. N. N. Namboodiri
{"title":"局部紧密豪斯多夫拓扑群上规则概率量半群的规则性","authors":"M. N. N. Namboodiri","doi":"10.1007/s10959-024-01353-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a locally compact Hausdorff group, and let <i>P</i>(<i>G</i>) denote the class of all regular probability measures on <i>G</i>. It is well known that <i>P</i>(<i>G</i>) forms a semigroup under the convolution of measures. In this paper, we prove that <i>P</i>(<i>G</i>) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of the Semigroup of Regular Probability Measures on Locally Compact Hausdorff Topological Groups\",\"authors\":\"M. N. N. Namboodiri\",\"doi\":\"10.1007/s10959-024-01353-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a locally compact Hausdorff group, and let <i>P</i>(<i>G</i>) denote the class of all regular probability measures on <i>G</i>. It is well known that <i>P</i>(<i>G</i>) forms a semigroup under the convolution of measures. In this paper, we prove that <i>P</i>(<i>G</i>) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01353-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01353-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是局部紧凑的 Hausdorff 群,让 P(G) 表示 G 上所有正则概率度量的类。众所周知,P(G) 在度量的卷积下构成一个半群。在本文中,我们将证明 P(G) 在代数意义上并不正则,即并非每个元素都有广义逆。此外,我们还试图在一些特殊情况下找出代数正则元素。本文提供了几个支持性例子来证明这些假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Regularity of the Semigroup of Regular Probability Measures on Locally Compact Hausdorff Topological Groups

Let G be a locally compact Hausdorff group, and let P(G) denote the class of all regular probability measures on G. It is well known that P(G) forms a semigroup under the convolution of measures. In this paper, we prove that P(G) is not algebraically regular in the sense that not every element has a generalized inverse. Additionally, we attempt to identify algebraically regular elements in some exceptional cases. Several supporting examples are provided to justify these assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信