海森堡群上的半线性阻尼波方程与负阶索博列夫空间的初始数据

IF 1.1 3区 数学 Q1 MATHEMATICS
Aparajita Dasgupta, Vishvesh Kumar, Shyam Swarup Mondal, Michael Ruzhansky
{"title":"海森堡群上的半线性阻尼波方程与负阶索博列夫空间的初始数据","authors":"Aparajita Dasgupta, Vishvesh Kumar, Shyam Swarup Mondal, Michael Ruzhansky","doi":"10.1007/s00028-024-00976-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian <span>\\(\\mathcal {L}\\)</span> on the Heisenberg group <span>\\(\\mathbb {H}^n\\)</span> with power type nonlinearity <span>\\(|u|^p\\)</span> and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space <span>\\(\\dot{H}^{-\\gamma }_{\\mathcal {L}}(\\mathbb {H}^n), \\gamma &gt;0\\)</span>, on <span>\\(\\mathbb {H}^n\\)</span>. In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent <span>\\(p_{\\text {crit}}(Q, \\gamma )=1+\\frac{4}{Q+2\\gamma },\\)</span> for <span>\\(\\gamma \\in (0, \\frac{Q}{2})\\)</span>, where <span>\\(Q:=2n+2\\)</span> is the homogeneous dimension of <span>\\(\\mathbb {H}^n\\)</span>. More precisely, we establish</p><ul>\n<li>\n<p>A global-in-time existence of small data Sobolev solutions of lower regularity for <span>\\(p&gt;p_{\\text {crit}}(Q, \\gamma )\\)</span> in the energy evolution space;</p>\n</li>\n<li>\n<p>A finite time blow-up of weak solutions for <span>\\(1&lt;p&lt;p_{\\text {crit}}(Q, \\gamma )\\)</span> under certain conditions on the initial data by using the test function method.</p>\n</li>\n</ul><p> Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order\",\"authors\":\"Aparajita Dasgupta, Vishvesh Kumar, Shyam Swarup Mondal, Michael Ruzhansky\",\"doi\":\"10.1007/s00028-024-00976-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian <span>\\\\(\\\\mathcal {L}\\\\)</span> on the Heisenberg group <span>\\\\(\\\\mathbb {H}^n\\\\)</span> with power type nonlinearity <span>\\\\(|u|^p\\\\)</span> and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space <span>\\\\(\\\\dot{H}^{-\\\\gamma }_{\\\\mathcal {L}}(\\\\mathbb {H}^n), \\\\gamma &gt;0\\\\)</span>, on <span>\\\\(\\\\mathbb {H}^n\\\\)</span>. In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent <span>\\\\(p_{\\\\text {crit}}(Q, \\\\gamma )=1+\\\\frac{4}{Q+2\\\\gamma },\\\\)</span> for <span>\\\\(\\\\gamma \\\\in (0, \\\\frac{Q}{2})\\\\)</span>, where <span>\\\\(Q:=2n+2\\\\)</span> is the homogeneous dimension of <span>\\\\(\\\\mathbb {H}^n\\\\)</span>. More precisely, we establish</p><ul>\\n<li>\\n<p>A global-in-time existence of small data Sobolev solutions of lower regularity for <span>\\\\(p&gt;p_{\\\\text {crit}}(Q, \\\\gamma )\\\\)</span> in the energy evolution space;</p>\\n</li>\\n<li>\\n<p>A finite time blow-up of weak solutions for <span>\\\\(1&lt;p&lt;p_{\\\\text {crit}}(Q, \\\\gamma )\\\\)</span> under certain conditions on the initial data by using the test function method.</p>\\n</li>\\n</ul><p> Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00976-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00976-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的半线性阻尼波方程的 Cauchy 问题。Laplacian \(\mathcal {L}\) on the Heisenberg group \(\mathbb {H}^n\) with power type nonlinearity \(|u|^p\) and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space \(\dot{H}^{-\gamma }_{mathcal {L}}(\mathbb {H}^n)、\gamma >;0), on \(\mathbb {H}^n\).特别是,在负序索波列夫空间的框架下,我们证明了临界指数是指\(p_{text {crit}}(Q, \gamma )=1+\frac{4}{Q+2\gamma },\) for \(\gamma \ in (0, \frac{Q}{2})\), 其中 \(Q. =2n+2) 是指数:=2n+2\) 是 \(\mathbb {H}^n\) 的同次元维度。更确切地说,我们利用检验函数方法,在能量演化空间中为\(p>p_{\text {crit}}(Q, \gamma )\)建立了全局时间内存在的具有较低正则性的小数据索波列夫解;在初始数据的某些条件下,为\(1<p<p_{\text {crit}}(Q, \gamma )\)建立了弱解的有限时间炸毁。此外,为了精确描述炸毁时间,我们推导出了亚临界情况下寿命的尖锐上界和下界估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order

Semilinear damped wave equations on the Heisenberg group with initial data from Sobolev spaces of negative order

In this paper, we focus on studying the Cauchy problem for semilinear damped wave equations involving the sub-Laplacian \(\mathcal {L}\) on the Heisenberg group \(\mathbb {H}^n\) with power type nonlinearity \(|u|^p\) and initial data taken from Sobolev spaces of negative order homogeneous Sobolev space \(\dot{H}^{-\gamma }_{\mathcal {L}}(\mathbb {H}^n), \gamma >0\), on \(\mathbb {H}^n\). In particular, in the framework of Sobolev spaces of negative order, we prove that the critical exponent is the exponent \(p_{\text {crit}}(Q, \gamma )=1+\frac{4}{Q+2\gamma },\) for \(\gamma \in (0, \frac{Q}{2})\), where \(Q:=2n+2\) is the homogeneous dimension of \(\mathbb {H}^n\). More precisely, we establish

  • A global-in-time existence of small data Sobolev solutions of lower regularity for \(p>p_{\text {crit}}(Q, \gamma )\) in the energy evolution space;

  • A finite time blow-up of weak solutions for \(1<p<p_{\text {crit}}(Q, \gamma )\) under certain conditions on the initial data by using the test function method.

Furthermore, to precisely characterize the blow-up time, we derive sharp upper bound and lower bound estimates for the lifespan in the subcritical case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信