涉及哈代-勒雷势的非局部抛物方程的藤田指数

IF 1.1 3区 数学 Q1 MATHEMATICS
Boumediene Abdellaoui, Giovanni Siclari, Ana Primo
{"title":"涉及哈代-勒雷势的非局部抛物方程的藤田指数","authors":"Boumediene Abdellaoui, Giovanni Siclari, Ana Primo","doi":"10.1007/s00028-024-00984-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (w_t-\\Delta w)^s=\\frac{\\lambda }{|x|^{2s}} w+w^p +f, &amp;{}\\quad \\text {in }\\mathbb {R}^N\\times (0,+\\infty ),\\\\ w(x,t)=0, &amp;{}\\quad \\text {in }\\mathbb {R}^N\\times (-\\infty ,0], \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(N&gt; 2s\\)</span>, <span>\\(0&lt;s&lt;1\\)</span> and <span>\\(0&lt;\\lambda &lt;\\Lambda _{N,s}\\)</span>, the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent <span>\\(p_{+}(\\lambda , s)\\)</span> and of a Fujita-type exponent <span>\\(F(\\lambda ,s)\\)</span> such that the following holds:</p><ul>\n<li>\n<p>Let <span>\\(p&gt;p_+(\\lambda ,s)\\)</span>. Then there are not any non-negative supersolutions.</p>\n</li>\n<li>\n<p>Let <span>\\(p&lt;p_+(\\lambda ,s)\\)</span>. Then there exist local solutions, while concerning global solutions we need to distinguish two cases:</p><ul>\n<li>\n<p>Let <span>\\( 1&lt; p\\le F(\\lambda ,s)\\)</span>. Here we show that a weighted norm of any positive solution blows up in finite time.</p>\n</li>\n<li>\n<p>Let <span>\\(F(\\lambda ,s)&lt;p&lt;p_+(\\lambda ,s)\\)</span>. Here we prove the existence of global solutions under suitable hypotheses.</p>\n</li>\n</ul>\n</li>\n</ul>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fujita exponent for non-local parabolic equation involving the Hardy–Leray potential\",\"authors\":\"Boumediene Abdellaoui, Giovanni Siclari, Ana Primo\",\"doi\":\"10.1007/s00028-024-00984-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (w_t-\\\\Delta w)^s=\\\\frac{\\\\lambda }{|x|^{2s}} w+w^p +f, &amp;{}\\\\quad \\\\text {in }\\\\mathbb {R}^N\\\\times (0,+\\\\infty ),\\\\\\\\ w(x,t)=0, &amp;{}\\\\quad \\\\text {in }\\\\mathbb {R}^N\\\\times (-\\\\infty ,0], \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(N&gt; 2s\\\\)</span>, <span>\\\\(0&lt;s&lt;1\\\\)</span> and <span>\\\\(0&lt;\\\\lambda &lt;\\\\Lambda _{N,s}\\\\)</span>, the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent <span>\\\\(p_{+}(\\\\lambda , s)\\\\)</span> and of a Fujita-type exponent <span>\\\\(F(\\\\lambda ,s)\\\\)</span> such that the following holds:</p><ul>\\n<li>\\n<p>Let <span>\\\\(p&gt;p_+(\\\\lambda ,s)\\\\)</span>. Then there are not any non-negative supersolutions.</p>\\n</li>\\n<li>\\n<p>Let <span>\\\\(p&lt;p_+(\\\\lambda ,s)\\\\)</span>. Then there exist local solutions, while concerning global solutions we need to distinguish two cases:</p><ul>\\n<li>\\n<p>Let <span>\\\\( 1&lt; p\\\\le F(\\\\lambda ,s)\\\\)</span>. Here we show that a weighted norm of any positive solution blows up in finite time.</p>\\n</li>\\n<li>\\n<p>Let <span>\\\\(F(\\\\lambda ,s)&lt;p&lt;p_+(\\\\lambda ,s)\\\\)</span>. Here we prove the existence of global solutions under suitable hypotheses.</p>\\n</li>\\n</ul>\\n</li>\\n</ul>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00984-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00984-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们分析了一个具有哈代-勒雷型势能的非局部抛物方程的非负解的存在性和不存在性。更确切地说,我们考虑的问题是 $$\begin{aligned} {\left\{ \begin{array}{ll} (w_t-\Delta w)^s=\frac\{lambda }{|x|^{2s}} w+w^p +f, &;{}\quad \text {in }\mathbb {R}^N\times (0,+\infty ),\ w(x,t)=0, &{}\quad \text {in }\mathbb {R}^N\times (-\infty ,0], \end{array}\right.}\end{aligned}$$where \(N> 2s\), \(0<s<1\) and \(0<\lambda <\Lambda _{N,s}\), the optimal constant in the fractional Hardy-Leray inequality.特别是,我们证明了临界存在指数(p_{+}(\lambda , s))和富士达型指数(F(\lambda ,s))的存在,使得以下条件成立:让(p>p_+(\lambda ,s))。Then there are not any non-negative supersolutions.让 \(p<p_+(\lambda ,s)\).那么存在局部解,而关于全局解,我们需要区分两种情况:让 ( 1< ple F(\lambda ,s)\).这里我们要证明任何正解的加权规范都会在有限的时间内爆炸。在此我们将证明在合适的假设条件下全局解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fujita exponent for non-local parabolic equation involving the Hardy–Leray potential

Fujita exponent for non-local parabolic equation involving the Hardy–Leray potential

In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (w_t-\Delta w)^s=\frac{\lambda }{|x|^{2s}} w+w^p +f, &{}\quad \text {in }\mathbb {R}^N\times (0,+\infty ),\\ w(x,t)=0, &{}\quad \text {in }\mathbb {R}^N\times (-\infty ,0], \end{array}\right. } \end{aligned}$$

where \(N> 2s\), \(0<s<1\) and \(0<\lambda <\Lambda _{N,s}\), the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent \(p_{+}(\lambda , s)\) and of a Fujita-type exponent \(F(\lambda ,s)\) such that the following holds:

  • Let \(p>p_+(\lambda ,s)\). Then there are not any non-negative supersolutions.

  • Let \(p<p_+(\lambda ,s)\). Then there exist local solutions, while concerning global solutions we need to distinguish two cases:

    • Let \( 1< p\le F(\lambda ,s)\). Here we show that a weighted norm of any positive solution blows up in finite time.

    • Let \(F(\lambda ,s)<p<p_+(\lambda ,s)\). Here we prove the existence of global solutions under suitable hypotheses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信