Boumediene Abdellaoui, Giovanni Siclari, Ana Primo
{"title":"涉及哈代-勒雷势的非局部抛物方程的藤田指数","authors":"Boumediene Abdellaoui, Giovanni Siclari, Ana Primo","doi":"10.1007/s00028-024-00984-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (w_t-\\Delta w)^s=\\frac{\\lambda }{|x|^{2s}} w+w^p +f, &{}\\quad \\text {in }\\mathbb {R}^N\\times (0,+\\infty ),\\\\ w(x,t)=0, &{}\\quad \\text {in }\\mathbb {R}^N\\times (-\\infty ,0], \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(N> 2s\\)</span>, <span>\\(0<s<1\\)</span> and <span>\\(0<\\lambda <\\Lambda _{N,s}\\)</span>, the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent <span>\\(p_{+}(\\lambda , s)\\)</span> and of a Fujita-type exponent <span>\\(F(\\lambda ,s)\\)</span> such that the following holds:</p><ul>\n<li>\n<p>Let <span>\\(p>p_+(\\lambda ,s)\\)</span>. Then there are not any non-negative supersolutions.</p>\n</li>\n<li>\n<p>Let <span>\\(p<p_+(\\lambda ,s)\\)</span>. Then there exist local solutions, while concerning global solutions we need to distinguish two cases:</p><ul>\n<li>\n<p>Let <span>\\( 1< p\\le F(\\lambda ,s)\\)</span>. Here we show that a weighted norm of any positive solution blows up in finite time.</p>\n</li>\n<li>\n<p>Let <span>\\(F(\\lambda ,s)<p<p_+(\\lambda ,s)\\)</span>. Here we prove the existence of global solutions under suitable hypotheses.</p>\n</li>\n</ul>\n</li>\n</ul>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fujita exponent for non-local parabolic equation involving the Hardy–Leray potential\",\"authors\":\"Boumediene Abdellaoui, Giovanni Siclari, Ana Primo\",\"doi\":\"10.1007/s00028-024-00984-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (w_t-\\\\Delta w)^s=\\\\frac{\\\\lambda }{|x|^{2s}} w+w^p +f, &{}\\\\quad \\\\text {in }\\\\mathbb {R}^N\\\\times (0,+\\\\infty ),\\\\\\\\ w(x,t)=0, &{}\\\\quad \\\\text {in }\\\\mathbb {R}^N\\\\times (-\\\\infty ,0], \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(N> 2s\\\\)</span>, <span>\\\\(0<s<1\\\\)</span> and <span>\\\\(0<\\\\lambda <\\\\Lambda _{N,s}\\\\)</span>, the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent <span>\\\\(p_{+}(\\\\lambda , s)\\\\)</span> and of a Fujita-type exponent <span>\\\\(F(\\\\lambda ,s)\\\\)</span> such that the following holds:</p><ul>\\n<li>\\n<p>Let <span>\\\\(p>p_+(\\\\lambda ,s)\\\\)</span>. Then there are not any non-negative supersolutions.</p>\\n</li>\\n<li>\\n<p>Let <span>\\\\(p<p_+(\\\\lambda ,s)\\\\)</span>. Then there exist local solutions, while concerning global solutions we need to distinguish two cases:</p><ul>\\n<li>\\n<p>Let <span>\\\\( 1< p\\\\le F(\\\\lambda ,s)\\\\)</span>. Here we show that a weighted norm of any positive solution blows up in finite time.</p>\\n</li>\\n<li>\\n<p>Let <span>\\\\(F(\\\\lambda ,s)<p<p_+(\\\\lambda ,s)\\\\)</span>. Here we prove the existence of global solutions under suitable hypotheses.</p>\\n</li>\\n</ul>\\n</li>\\n</ul>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00984-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00984-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们分析了一个具有哈代-勒雷型势能的非局部抛物方程的非负解的存在性和不存在性。更确切地说,我们考虑的问题是 $$\begin{aligned} {\left\{ \begin{array}{ll} (w_t-\Delta w)^s=\frac\{lambda }{|x|^{2s}} w+w^p +f, &;{}\quad \text {in }\mathbb {R}^N\times (0,+\infty ),\ w(x,t)=0, &{}\quad \text {in }\mathbb {R}^N\times (-\infty ,0], \end{array}\right.}\end{aligned}$$where \(N> 2s\), \(0<s<1\) and \(0<\lambda <\Lambda _{N,s}\), the optimal constant in the fractional Hardy-Leray inequality.特别是,我们证明了临界存在指数(p_{+}(\lambda , s))和富士达型指数(F(\lambda ,s))的存在,使得以下条件成立:让(p>p_+(\lambda ,s))。Then there are not any non-negative supersolutions.让 \(p<p_+(\lambda ,s)\).那么存在局部解,而关于全局解,我们需要区分两种情况:让 ( 1< ple F(\lambda ,s)\).这里我们要证明任何正解的加权规范都会在有限的时间内爆炸。在此我们将证明在合适的假设条件下全局解的存在性。
Fujita exponent for non-local parabolic equation involving the Hardy–Leray potential
In this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem
where \(N> 2s\), \(0<s<1\) and \(0<\lambda <\Lambda _{N,s}\), the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent \(p_{+}(\lambda , s)\) and of a Fujita-type exponent \(F(\lambda ,s)\) such that the following holds:
Let \(p>p_+(\lambda ,s)\). Then there are not any non-negative supersolutions.
Let \(p<p_+(\lambda ,s)\). Then there exist local solutions, while concerning global solutions we need to distinguish two cases:
Let \( 1< p\le F(\lambda ,s)\). Here we show that a weighted norm of any positive solution blows up in finite time.
Let \(F(\lambda ,s)<p<p_+(\lambda ,s)\). Here we prove the existence of global solutions under suitable hypotheses.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators