插值不等式及其在分数解析族稳定性中的应用

IF 1.1 3区 数学 Q1 MATHEMATICS
Jie Mei, Miao Li
{"title":"插值不等式及其在分数解析族稳定性中的应用","authors":"Jie Mei, Miao Li","doi":"10.1007/s00028-024-00990-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove an interpolation inequality on Riemann–Liouville fractional integrals and then use it to study the strong stability and semi-uniform stability of fractional resolvent families of order <span>\\(0&lt;\\alpha &lt;2\\)</span>. Let <i>A</i> denote the generator of a bounded fractional resolvent family. We show that if <span>\\(\\sigma (A)\\cap (\\textrm{i}{\\mathbb {R}})^\\alpha \\)</span> is countable and <span>\\(\\sigma _r(A) \\cap (\\textrm{i}{\\mathbb {R}})^\\alpha =\\varnothing \\)</span>, then the bounded fractional resolvent family is strongly stable. And the semi-uniform stability of the fractional resolvent family is equivalent to <span>\\(\\sigma (A)\\cap (\\textrm{i}{\\mathbb {R}})^\\alpha =\\varnothing \\)</span>. Moreover, the relation between decay rates of semi-uniform stability and growth of the resolvent of <i>A</i> along <span>\\((\\textrm{i}{\\mathbb {R}})^\\alpha \\)</span> is given.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpolation inequality and its applications to stability of fractional resolvent families\",\"authors\":\"Jie Mei, Miao Li\",\"doi\":\"10.1007/s00028-024-00990-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove an interpolation inequality on Riemann–Liouville fractional integrals and then use it to study the strong stability and semi-uniform stability of fractional resolvent families of order <span>\\\\(0&lt;\\\\alpha &lt;2\\\\)</span>. Let <i>A</i> denote the generator of a bounded fractional resolvent family. We show that if <span>\\\\(\\\\sigma (A)\\\\cap (\\\\textrm{i}{\\\\mathbb {R}})^\\\\alpha \\\\)</span> is countable and <span>\\\\(\\\\sigma _r(A) \\\\cap (\\\\textrm{i}{\\\\mathbb {R}})^\\\\alpha =\\\\varnothing \\\\)</span>, then the bounded fractional resolvent family is strongly stable. And the semi-uniform stability of the fractional resolvent family is equivalent to <span>\\\\(\\\\sigma (A)\\\\cap (\\\\textrm{i}{\\\\mathbb {R}})^\\\\alpha =\\\\varnothing \\\\)</span>. Moreover, the relation between decay rates of semi-uniform stability and growth of the resolvent of <i>A</i> along <span>\\\\((\\\\textrm{i}{\\\\mathbb {R}})^\\\\alpha \\\\)</span> is given.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00990-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00990-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了关于黎曼-刘维尔分数积分的插值不等式,然后用它来研究阶为 \(0<\alpha <2\)的分数解析族的强稳定性和半均匀稳定性。让 A 表示有界分数 resolvent 族的生成器。我们证明,如果 \(\sigma (A)\cap (\textrm{i}{\mathbb {R}})^\alpha \)是可数的,并且 \(\sigma _r(A) \cap (\textrm{i}{\mathbb {R}})^\alpha =\varnothing \),那么有界分数解析族是强稳定的。而分数解析vent族的半均匀稳定性等价于(\sigma (A)\cap (\textrm{i}{\mathbb {R}})^\alpha =\varnothing \)。此外,还给出了半均匀稳定性的衰减率与 A 的解析量沿 \((\textrm{i}{\mathbb {R}})^\alpha \) 增长之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpolation inequality and its applications to stability of fractional resolvent families

In this paper, we prove an interpolation inequality on Riemann–Liouville fractional integrals and then use it to study the strong stability and semi-uniform stability of fractional resolvent families of order \(0<\alpha <2\). Let A denote the generator of a bounded fractional resolvent family. We show that if \(\sigma (A)\cap (\textrm{i}{\mathbb {R}})^\alpha \) is countable and \(\sigma _r(A) \cap (\textrm{i}{\mathbb {R}})^\alpha =\varnothing \), then the bounded fractional resolvent family is strongly stable. And the semi-uniform stability of the fractional resolvent family is equivalent to \(\sigma (A)\cap (\textrm{i}{\mathbb {R}})^\alpha =\varnothing \). Moreover, the relation between decay rates of semi-uniform stability and growth of the resolvent of A along \((\textrm{i}{\mathbb {R}})^\alpha \) is given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信