具有表面张力的旋转液滴的稳定性

IF 1.1 3区 数学 Q1 MATHEMATICS
Keiichi Watanabe
{"title":"具有表面张力的旋转液滴的稳定性","authors":"Keiichi Watanabe","doi":"10.1007/s00028-024-00986-3","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to investigate the stability of a stationary solution of free boundary problems of the incompressible Navier–Stokes equations in a three-dimensional bounded domain with surface tension. More precisely, this article proves that if the initial angular momentum is sufficiently small and if the initial configuration is sufficiently close to equilibrium, then there exists a global classical solution that converges exponentially fast to a uniform rigid rotation of the liquid as <span>\\(t \\rightarrow \\infty \\)</span> with respect to a certain axis. The proof of the <i>unique</i> existence of a stationary solution is also given.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"83 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of rotating liquid drops with surface tension\",\"authors\":\"Keiichi Watanabe\",\"doi\":\"10.1007/s00028-024-00986-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to investigate the stability of a stationary solution of free boundary problems of the incompressible Navier–Stokes equations in a three-dimensional bounded domain with surface tension. More precisely, this article proves that if the initial angular momentum is sufficiently small and if the initial configuration is sufficiently close to equilibrium, then there exists a global classical solution that converges exponentially fast to a uniform rigid rotation of the liquid as <span>\\\\(t \\\\rightarrow \\\\infty \\\\)</span> with respect to a certain axis. The proof of the <i>unique</i> existence of a stationary solution is also given.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00986-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00986-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究具有表面张力的三维有界域中不可压缩纳维-斯托克斯方程自由边界问题的静态解的稳定性。更确切地说,本文证明了如果初始角动量足够小,如果初始构型足够接近平衡,那么存在一个全局经典解,该解相对于某一轴线以指数速度收敛于液体的均匀刚性旋转(t \rightarrow \infty \)。同时还给出了静止解唯一存在的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of rotating liquid drops with surface tension

The aim of this paper is to investigate the stability of a stationary solution of free boundary problems of the incompressible Navier–Stokes equations in a three-dimensional bounded domain with surface tension. More precisely, this article proves that if the initial angular momentum is sufficiently small and if the initial configuration is sufficiently close to equilibrium, then there exists a global classical solution that converges exponentially fast to a uniform rigid rotation of the liquid as \(t \rightarrow \infty \) with respect to a certain axis. The proof of the unique existence of a stationary solution is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信