{"title":"半盲图像解卷积中的边际似然估计:随机逼近法","authors":"Charlesquin Kemajou Mbakam, Marcelo Pereyra, Jean-François Giovannelli","doi":"10.1137/23m1584496","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1206-1254, June 2024. <br/> Abstract.This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a Moreau–Yosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach\",\"authors\":\"Charlesquin Kemajou Mbakam, Marcelo Pereyra, Jean-François Giovannelli\",\"doi\":\"10.1137/23m1584496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1206-1254, June 2024. <br/> Abstract.This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a Moreau–Yosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1584496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1584496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach
SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 1206-1254, June 2024. Abstract.This paper presents a novel stochastic optimization methodology to perform empirical Bayesian inference in semi-blind image deconvolution problems. Given a blurred image and a parametric class of possible operators, the proposed optimization approach automatically calibrates the parameters of the blur model by maximum marginal likelihood estimation, followed by (non-blind) image deconvolution by maximum a posteriori estimation conditionally to the estimated model parameters. In addition to the blur model, the proposed approach also automatically calibrates the noise level as well as any regularization parameters. The marginal likelihood of the blur, noise, and regularization parameters is generally computationally intractable, as it requires calculating several integrals over the entire solution space. Our approach addresses this difficulty by using a stochastic approximation proximal gradient optimization scheme, which iteratively solves such integrals by using a Moreau–Yosida regularized unadjusted Langevin Markov chain Monte Carlo algorithm. This optimization strategy can be easily and efficiently applied to any model that is log-concave and by using the same gradient and proximal operators that are required to compute the maximum a posteriori solution by convex optimization. We provide convergence guarantees for the proposed optimization scheme under realistic and easily verifiable conditions and subsequently demonstrate the effectiveness of the approach with a series of deconvolution experiments and comparisons with alternative strategies from the state of the art