IML FISTA:不精确和惯性前向-后向的多层次框架。应用于图像复原

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Guillaume Lauga, Elisa Riccietti, Nelly Pustelnik, Paulo Gonçalves
{"title":"IML FISTA:不精确和惯性前向-后向的多层次框架。应用于图像复原","authors":"Guillaume Lauga, Elisa Riccietti, Nelly Pustelnik, Paulo Gonçalves","doi":"10.1137/23m1582345","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1347-1376, September 2024. <br/> Abstract. This paper presents a multilevel framework for inertial and inexact proximal algorithms that encompasses multilevel versions of classical algorithms such as forward-backward and FISTA. The methods are supported by strong theoretical guarantees: we prove both the rate of convergence and the convergence of the iterates to a minimum in the convex case, an important result for ill-posed problems. We propose a particular instance of IML (Inexact MultiLevel) FISTA, based on the use of the Moreau envelope to build efficient and useful coarse corrections, fully adapted to solve problems in image restoration. Such a construction is derived for a broad class of composite optimization problems with proximable functions. We evaluate our approach on several image reconstruction problems, and we show that it considerably accelerates the convergence of the corresponding one-level (i.e., standard) version of the methods for large-scale images.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IML FISTA: A Multilevel Framework for Inexact and Inertial Forward-Backward. Application to Image Restoration\",\"authors\":\"Guillaume Lauga, Elisa Riccietti, Nelly Pustelnik, Paulo Gonçalves\",\"doi\":\"10.1137/23m1582345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1347-1376, September 2024. <br/> Abstract. This paper presents a multilevel framework for inertial and inexact proximal algorithms that encompasses multilevel versions of classical algorithms such as forward-backward and FISTA. The methods are supported by strong theoretical guarantees: we prove both the rate of convergence and the convergence of the iterates to a minimum in the convex case, an important result for ill-posed problems. We propose a particular instance of IML (Inexact MultiLevel) FISTA, based on the use of the Moreau envelope to build efficient and useful coarse corrections, fully adapted to solve problems in image restoration. Such a construction is derived for a broad class of composite optimization problems with proximable functions. We evaluate our approach on several image reconstruction problems, and we show that it considerably accelerates the convergence of the corresponding one-level (i.e., standard) version of the methods for large-scale images.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1582345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1582345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 影像科学杂志》,第 17 卷第 3 期,第 1347-1376 页,2024 年 9 月。 摘要本文提出了一种惯性和非精确近似算法的多层次框架,其中包含经典算法的多层次版本,如前向-后向和 FISTA。这些方法有强有力的理论保证:我们证明了收敛率和迭代在凸情况下收敛到最小值,这对于问题不明确的情况是一个重要结果。我们提出了 IML(非精确多级)FISTA 的一个特殊实例,它基于莫罗包络来建立高效有用的粗校正,完全适用于解决图像复原问题。这种构造适用于一大类具有近似函数的复合优化问题。我们在几个图像重建问题上对我们的方法进行了评估,结果表明它大大加快了相应的单级(即标准)版本方法对大规模图像的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IML FISTA: A Multilevel Framework for Inexact and Inertial Forward-Backward. Application to Image Restoration
SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1347-1376, September 2024.
Abstract. This paper presents a multilevel framework for inertial and inexact proximal algorithms that encompasses multilevel versions of classical algorithms such as forward-backward and FISTA. The methods are supported by strong theoretical guarantees: we prove both the rate of convergence and the convergence of the iterates to a minimum in the convex case, an important result for ill-posed problems. We propose a particular instance of IML (Inexact MultiLevel) FISTA, based on the use of the Moreau envelope to build efficient and useful coarse corrections, fully adapted to solve problems in image restoration. Such a construction is derived for a broad class of composite optimization problems with proximable functions. We evaluate our approach on several image reconstruction problems, and we show that it considerably accelerates the convergence of the corresponding one-level (i.e., standard) version of the methods for large-scale images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信