直观集与数:小集理论与海廷算术

IF 0.4 4区 数学 Q4 LOGIC
Stewart Shapiro, Charles McCarty, Michael Rathjen
{"title":"直观集与数:小集理论与海廷算术","authors":"Stewart Shapiro, Charles McCarty, Michael Rathjen","doi":"10.1007/s00153-024-00935-4","DOIUrl":null,"url":null,"abstract":"<p>It has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of this. We present an intuitionistic theory of the hereditarily finite sets, and show that it is definitionally equivalent to Heyting Arithmetic <span>HA</span>, in a sense to be made precise. Our main target theory, the intuitionistic small set theory <span>SST</span> is remarkably simple, and intuitive. It has just one non-logical primitive, for membership, and three straightforward axioms plus one axiom scheme. We locate our theory within intuitionistic mathematics generally.</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"49 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intuitionistic sets and numbers: small set theory and Heyting arithmetic\",\"authors\":\"Stewart Shapiro, Charles McCarty, Michael Rathjen\",\"doi\":\"10.1007/s00153-024-00935-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of this. We present an intuitionistic theory of the hereditarily finite sets, and show that it is definitionally equivalent to Heyting Arithmetic <span>HA</span>, in a sense to be made precise. Our main target theory, the intuitionistic small set theory <span>SST</span> is remarkably simple, and intuitive. It has just one non-logical primitive, for membership, and three straightforward axioms plus one axiom scheme. We locate our theory within intuitionistic mathematics generally.</p>\",\"PeriodicalId\":8350,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00153-024-00935-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00935-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,(经典)皮亚诺算术在某种强烈的意义上 "等价于"(经典)泽梅洛-弗莱克尔集合论(包括选择)的变体,其中无穷公理被其否定所取代。后者的预期模型是遗传有限集。这些理论之间的联系如此紧密,以至于它们可以被视为彼此的符号变体。我们在这里的目的是发展和建立一个构造性版本。我们提出了遗传有限集的直觉主义理论,并证明它在定义上等同于海廷算术 HA,在某种意义上是精确的。我们的主要目标理论--直观小集合理论 SST 非常简单直观。它只有一个用于成员资格的非逻辑基元,以及三个直接公理和一个公理方案。我们将我们的理论置于直觉主义数学之中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intuitionistic sets and numbers: small set theory and Heyting arithmetic

It has long been known that (classical) Peano arithmetic is, in some strong sense, “equivalent” to the variant of (classical) Zermelo–Fraenkel set theory (including choice) in which the axiom of infinity is replaced by its negation. The intended model of the latter is the set of hereditarily finite sets. The connection between the theories is so tight that they may be taken as notational variants of each other. Our purpose here is to develop and establish a constructive version of this. We present an intuitionistic theory of the hereditarily finite sets, and show that it is definitionally equivalent to Heyting Arithmetic HA, in a sense to be made precise. Our main target theory, the intuitionistic small set theory SST is remarkably simple, and intuitive. It has just one non-logical primitive, for membership, and three straightforward axioms plus one axiom scheme. We locate our theory within intuitionistic mathematics generally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
45
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信