类异染色质蛋白 1 (LHP1) 作为植物发育表观遗传调控因子的功能

IF 2.2 4区 生物学 Q2 PLANT SCIENCES
Sivabalan Karthik, Seong Ju Han, Jia Chae, Hye Jeong Kim, Jee Hye Kim, Young-Soo Chung, Jae Bok Heo
{"title":"类异染色质蛋白 1 (LHP1) 作为植物发育表观遗传调控因子的功能","authors":"Sivabalan Karthik, Seong Ju Han, Jia Chae, Hye Jeong Kim, Jee Hye Kim, Young-Soo Chung, Jae Bok Heo","doi":"10.1007/s12374-024-09435-7","DOIUrl":null,"url":null,"abstract":"<p>Plants have the fascinating ability to regulate their genetic expression through epigenetic mechanisms. Polycomb group (PcG) proteins in Polycomb repressive complexes (PRC1 and PRC2) especially regulate cellular and developmental processes in eukaryotes through epigenetic mechanisms. <i>Arabidopsis thaliana</i> has a fascinating name, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), called TERMINAL FLOWER 2 (TFL2). This protein was initially recognized as the plant equivalent of animal HP1 due to the presence of a chromo domain and a chromo shadow domain. It can bind to the trimethylated lysine 27 of histone H3 (H3K27me3) mark spread throughout the genome and regulate gene expression. This is crucial for the plant PcG system, which PRC2 establishes for epigenetic control. Although LHP1 has been found to perform diverse functions, it is still unclear whether these functions are carried out through similar mechanisms and whether it regulates the same target genes. This highlights the need for further research on LHP1 to better understand its mechanisms and functions. The following review provides detailed information about LHP1, which is closely linked to histone marks and the regulation of gene expression and explores how LHP1 influences flower timing and root development to improve crop traits. Recent progress in tomato and soybean production highlights the crucial role of LHP1 in shaping crop characteristics. The review suggests that LHP1 may control H3K27me3 in different plant species by regulating specific genes through epigenetic mechanisms. In summary, it emphasizes the importance of understanding LHP1’s role in plant development for breeding purposes.</p>","PeriodicalId":16762,"journal":{"name":"Journal of Plant Biology","volume":"21 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Function of Like Heterochromatin Protein 1 (LHP1) as an Epigenetic Regulator of Plant Development\",\"authors\":\"Sivabalan Karthik, Seong Ju Han, Jia Chae, Hye Jeong Kim, Jee Hye Kim, Young-Soo Chung, Jae Bok Heo\",\"doi\":\"10.1007/s12374-024-09435-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plants have the fascinating ability to regulate their genetic expression through epigenetic mechanisms. Polycomb group (PcG) proteins in Polycomb repressive complexes (PRC1 and PRC2) especially regulate cellular and developmental processes in eukaryotes through epigenetic mechanisms. <i>Arabidopsis thaliana</i> has a fascinating name, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), called TERMINAL FLOWER 2 (TFL2). This protein was initially recognized as the plant equivalent of animal HP1 due to the presence of a chromo domain and a chromo shadow domain. It can bind to the trimethylated lysine 27 of histone H3 (H3K27me3) mark spread throughout the genome and regulate gene expression. This is crucial for the plant PcG system, which PRC2 establishes for epigenetic control. Although LHP1 has been found to perform diverse functions, it is still unclear whether these functions are carried out through similar mechanisms and whether it regulates the same target genes. This highlights the need for further research on LHP1 to better understand its mechanisms and functions. The following review provides detailed information about LHP1, which is closely linked to histone marks and the regulation of gene expression and explores how LHP1 influences flower timing and root development to improve crop traits. Recent progress in tomato and soybean production highlights the crucial role of LHP1 in shaping crop characteristics. The review suggests that LHP1 may control H3K27me3 in different plant species by regulating specific genes through epigenetic mechanisms. In summary, it emphasizes the importance of understanding LHP1’s role in plant development for breeding purposes.</p>\",\"PeriodicalId\":16762,\"journal\":{\"name\":\"Journal of Plant Biology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12374-024-09435-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12374-024-09435-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物具有通过表观遗传机制调节基因表达的神奇能力。多聚核抑制复合体(PRC1 和 PRC2)中的多聚核群(PcG)蛋白尤其能通过表观遗传机制调控真核生物的细胞和发育过程。拟南芥(Arabidopsis thaliana)有一个引人入胜的名字--LIKE HETEROCHROMATIN PROTEIN 1(LHP1),被称为末端花朵 2(TFL2)。这种蛋白质最初被认为相当于植物的动物 HP1,因为它有一个染色质结构域和一个染色质阴影结构域。它能与组蛋白 H3 的三甲基化赖氨酸 27(H3K27me3)标记结合,遍布整个基因组并调节基因表达。这对植物 PcG 系统至关重要,PRC2 建立了这一系统来进行表观遗传控制。虽然发现 LHP1 具有多种功能,但这些功能是否通过相似的机制实现,以及它是否调控相同的靶基因,目前仍不清楚。这凸显了进一步研究 LHP1 的必要性,以便更好地了解其机制和功能。以下综述详细介绍了与组蛋白标记和基因表达调控密切相关的 LHP1,并探讨了 LHP1 如何影响花期和根系发育以改善作物性状。番茄和大豆生产的最新进展凸显了 LHP1 在塑造作物特性方面的关键作用。综述认为,LHP1 可能通过表观遗传机制调控特定基因,从而控制不同植物物种中的 H3K27me3。总之,综述强调了了解 LHP1 在植物发育过程中的作用对于育种的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Function of Like Heterochromatin Protein 1 (LHP1) as an Epigenetic Regulator of Plant Development

The Function of Like Heterochromatin Protein 1 (LHP1) as an Epigenetic Regulator of Plant Development

Plants have the fascinating ability to regulate their genetic expression through epigenetic mechanisms. Polycomb group (PcG) proteins in Polycomb repressive complexes (PRC1 and PRC2) especially regulate cellular and developmental processes in eukaryotes through epigenetic mechanisms. Arabidopsis thaliana has a fascinating name, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), called TERMINAL FLOWER 2 (TFL2). This protein was initially recognized as the plant equivalent of animal HP1 due to the presence of a chromo domain and a chromo shadow domain. It can bind to the trimethylated lysine 27 of histone H3 (H3K27me3) mark spread throughout the genome and regulate gene expression. This is crucial for the plant PcG system, which PRC2 establishes for epigenetic control. Although LHP1 has been found to perform diverse functions, it is still unclear whether these functions are carried out through similar mechanisms and whether it regulates the same target genes. This highlights the need for further research on LHP1 to better understand its mechanisms and functions. The following review provides detailed information about LHP1, which is closely linked to histone marks and the regulation of gene expression and explores how LHP1 influences flower timing and root development to improve crop traits. Recent progress in tomato and soybean production highlights the crucial role of LHP1 in shaping crop characteristics. The review suggests that LHP1 may control H3K27me3 in different plant species by regulating specific genes through epigenetic mechanisms. In summary, it emphasizes the importance of understanding LHP1’s role in plant development for breeding purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Biology
Journal of Plant Biology 生物-植物科学
CiteScore
5.40
自引率
3.40%
发文量
29
审稿时长
1 months
期刊介绍: Journal of Plant Biology, an official publication of the Botanical Society of Korea, is an international journal devoted to basic researches in biochemistry, cellular biology, development, ecology, genetics, molecular biology, physiology, and systematics of plants. The Journal publishes the following categories of paper: Original articles -- For publication in Journal of Plant Biology the manuscript must provide a significant new contribution to our understanding of plants. All areas of plant biology are welcome. No limit on the length, but a concise presentation is encouraged. Reviews -- Invited by the EiC. Brief Communications -- Concise but independent report representing significant contribution to plant science. The Botanical Society of Korea was founded on November 30, 1957 to promote studies, disseminate and exchange information on the field of plant biology. The first issue of The Korean Journal of Botany, the official publication of the society, was published on April 1, 1958. It was published twice a year, but quarterly from 5th volume in 1962. In 1994, it was renamed to Journal of Plant Biology and published in English since 1996. The journal entered its 50th year of publication in 2007.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信