通过分数微积分和分数布朗运动模拟有记忆的金融系统

Patrick Geraghty
{"title":"通过分数微积分和分数布朗运动模拟有记忆的金融系统","authors":"Patrick Geraghty","doi":"arxiv-2406.19408","DOIUrl":null,"url":null,"abstract":"Financial markets have long since been modeled using stochastic methods such\nas Brownian motion, and more recently, rough volatility models have been built\nusing fractional Brownian motion. This fractional aspect brings memory into the\nsystem. In this project, we describe and analyze a financial model based on the\nfractional Langevin equation with colored noise generated by fractional\nBrownian motion. Physics-based methods of analysis are used to examine the\nphase behavior and dispersion relations of the system upon varying input\nparameters. A type of anomalous marginal glass phase is potentially seen in\nsome regions, which motivates further exploration of this model and expanded\nuse of phase behavior and dispersion relation methods to analyze financial\nmodels.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling a Financial System with Memory via Fractional Calculus and Fractional Brownian Motion\",\"authors\":\"Patrick Geraghty\",\"doi\":\"arxiv-2406.19408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial markets have long since been modeled using stochastic methods such\\nas Brownian motion, and more recently, rough volatility models have been built\\nusing fractional Brownian motion. This fractional aspect brings memory into the\\nsystem. In this project, we describe and analyze a financial model based on the\\nfractional Langevin equation with colored noise generated by fractional\\nBrownian motion. Physics-based methods of analysis are used to examine the\\nphase behavior and dispersion relations of the system upon varying input\\nparameters. A type of anomalous marginal glass phase is potentially seen in\\nsome regions, which motivates further exploration of this model and expanded\\nuse of phase behavior and dispersion relation methods to analyze financial\\nmodels.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,金融市场一直使用随机方法(如布朗运动)来建模,最近,人们又利用分 子布朗运动建立了粗略波动模型。这种分数运动为系统带来了记忆。在本项目中,我们描述并分析了一个基于分式朗文方程的金融模型,该模型带有由分式布朗运动产生的彩色噪声。我们采用了基于物理学的分析方法来研究输入参数变化时系统的相位行为和分散关系。在某些区域可能会出现一种反常的边缘玻璃相,这促使我们进一步探索这一模型,并扩大使用相行为和分散关系方法来分析金融模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling a Financial System with Memory via Fractional Calculus and Fractional Brownian Motion
Financial markets have long since been modeled using stochastic methods such as Brownian motion, and more recently, rough volatility models have been built using fractional Brownian motion. This fractional aspect brings memory into the system. In this project, we describe and analyze a financial model based on the fractional Langevin equation with colored noise generated by fractional Brownian motion. Physics-based methods of analysis are used to examine the phase behavior and dispersion relations of the system upon varying input parameters. A type of anomalous marginal glass phase is potentially seen in some regions, which motivates further exploration of this model and expanded use of phase behavior and dispersion relation methods to analyze financial models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信