Sean P. McGowan, William S. P. Robertson, Chantelle Blachut, Sanjeeva Balasuriya
{"title":"从数据中优化重建矢量场以进行预测和不确定性量化","authors":"Sean P. McGowan, William S. P. Robertson, Chantelle Blachut, Sanjeeva Balasuriya","doi":"10.1007/s00332-024-10047-1","DOIUrl":null,"url":null,"abstract":"<p>Predicting the evolution of dynamics from a given trajectory history of an unknown system is an important and challenging problem. This paper presents a model-free method of forecasting unknown chaotic systems through reconstructing vector fields from noisy measured data via an adaptation of optimal control methods. This technique is also applicable to partially observed systems using a Takens delay embedding approach. The algorithms are validated on the Lorenz system and the four-dimensional hyperchaotic Rössler system, and demonstrate successful predictions well beyond the Lyapunov timescale. It is found that for small datasets or datasets with large levels of noise, the prediction accuracy of partially observed systems approaches that of fully observed systems. The presented approach also allows the model-free assessment of local predictability on the attractor by evolving initial condition density through the reconstructed vector fields via estimation of the transfer operator. The method is compared to predictions made by an imperfect model which highlights the utility of model-free approaches when the only available models have significant model error. The capability of this method for reconstruction of continuous and global vector fields may be applied to model validation, forecasting of initial conditions not in the training set, and model-free filtering. </p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Reconstruction of Vector Fields from Data for Prediction and Uncertainty Quantification\",\"authors\":\"Sean P. McGowan, William S. P. Robertson, Chantelle Blachut, Sanjeeva Balasuriya\",\"doi\":\"10.1007/s00332-024-10047-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the evolution of dynamics from a given trajectory history of an unknown system is an important and challenging problem. This paper presents a model-free method of forecasting unknown chaotic systems through reconstructing vector fields from noisy measured data via an adaptation of optimal control methods. This technique is also applicable to partially observed systems using a Takens delay embedding approach. The algorithms are validated on the Lorenz system and the four-dimensional hyperchaotic Rössler system, and demonstrate successful predictions well beyond the Lyapunov timescale. It is found that for small datasets or datasets with large levels of noise, the prediction accuracy of partially observed systems approaches that of fully observed systems. The presented approach also allows the model-free assessment of local predictability on the attractor by evolving initial condition density through the reconstructed vector fields via estimation of the transfer operator. The method is compared to predictions made by an imperfect model which highlights the utility of model-free approaches when the only available models have significant model error. The capability of this method for reconstruction of continuous and global vector fields may be applied to model validation, forecasting of initial conditions not in the training set, and model-free filtering. </p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10047-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10047-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal Reconstruction of Vector Fields from Data for Prediction and Uncertainty Quantification
Predicting the evolution of dynamics from a given trajectory history of an unknown system is an important and challenging problem. This paper presents a model-free method of forecasting unknown chaotic systems through reconstructing vector fields from noisy measured data via an adaptation of optimal control methods. This technique is also applicable to partially observed systems using a Takens delay embedding approach. The algorithms are validated on the Lorenz system and the four-dimensional hyperchaotic Rössler system, and demonstrate successful predictions well beyond the Lyapunov timescale. It is found that for small datasets or datasets with large levels of noise, the prediction accuracy of partially observed systems approaches that of fully observed systems. The presented approach also allows the model-free assessment of local predictability on the attractor by evolving initial condition density through the reconstructed vector fields via estimation of the transfer operator. The method is compared to predictions made by an imperfect model which highlights the utility of model-free approaches when the only available models have significant model error. The capability of this method for reconstruction of continuous and global vector fields may be applied to model validation, forecasting of initial conditions not in the training set, and model-free filtering.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.