球面和双曲面中的悬链问题

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Rafael López
{"title":"球面和双曲面中的悬链问题","authors":"Rafael López","doi":"10.1007/s00332-024-10056-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the notion of the catenary curve in the sphere and in the hyperbolic plane is introduced. In both spaces, a catenary is defined as the shape of a hanging chain when its potential energy is determined by the distance to a given geodesic of the space. Several characterizations of the catenary are established in terms of the curvature of the curve and of the angle that its unit normal makes with a vector field of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of catenary substituting the reference geodesic by a horocycle or the hyperbolic distance by the horocycle distance.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"145 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hanging Chain Problem in the Sphere and in the Hyperbolic Plane\",\"authors\":\"Rafael López\",\"doi\":\"10.1007/s00332-024-10056-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the notion of the catenary curve in the sphere and in the hyperbolic plane is introduced. In both spaces, a catenary is defined as the shape of a hanging chain when its potential energy is determined by the distance to a given geodesic of the space. Several characterizations of the catenary are established in terms of the curvature of the curve and of the angle that its unit normal makes with a vector field of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of catenary substituting the reference geodesic by a horocycle or the hyperbolic distance by the horocycle distance.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10056-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10056-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了球面和双曲面中的导管曲线概念。在这两个空间中,当悬链的势能由到空间给定测地线的距离决定时,悬链被定义为悬链的形状。根据曲线的曲率及其单位法线与环境空间向量场的夹角,确定了悬链的几个特征。此外,在双曲面中,我们扩展了全缘的概念,用角环来代替参考大地线,或用角环距离来代替双曲距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Hanging Chain Problem in the Sphere and in the Hyperbolic Plane

The Hanging Chain Problem in the Sphere and in the Hyperbolic Plane

In this paper, the notion of the catenary curve in the sphere and in the hyperbolic plane is introduced. In both spaces, a catenary is defined as the shape of a hanging chain when its potential energy is determined by the distance to a given geodesic of the space. Several characterizations of the catenary are established in terms of the curvature of the curve and of the angle that its unit normal makes with a vector field of the ambient space. Furthermore, in the hyperbolic plane, we extend the concept of catenary substituting the reference geodesic by a horocycle or the hyperbolic distance by the horocycle distance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信